首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1394篇
  免费   108篇
  国内免费   48篇
  2023年   19篇
  2022年   31篇
  2021年   35篇
  2020年   27篇
  2019年   36篇
  2018年   53篇
  2017年   37篇
  2016年   42篇
  2015年   52篇
  2014年   73篇
  2013年   131篇
  2012年   72篇
  2011年   66篇
  2010年   43篇
  2009年   56篇
  2008年   60篇
  2007年   71篇
  2006年   70篇
  2005年   72篇
  2004年   63篇
  2003年   30篇
  2002年   42篇
  2001年   25篇
  2000年   31篇
  1999年   28篇
  1998年   32篇
  1997年   35篇
  1996年   26篇
  1995年   24篇
  1994年   20篇
  1993年   16篇
  1992年   13篇
  1991年   10篇
  1990年   5篇
  1989年   9篇
  1988年   12篇
  1987年   4篇
  1986年   5篇
  1985年   9篇
  1984年   17篇
  1983年   7篇
  1982年   7篇
  1981年   5篇
  1980年   2篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1976年   7篇
  1974年   3篇
  1973年   2篇
排序方式: 共有1550条查询结果,搜索用时 31 毫秒
101.
Protein kinase D (PKD/PKCmu immunoprecipitated from either COS-7 cells or Jurkat T lymphocytes transiently transfected with a constitutively active mutant of PKCtheta AE (PKCthetaAE) exhibited a marked increase in basal activity. In contrast, coexpression of constitutively active mutant of PKCzeta does not induce PKD activation in both types of cells. PKCthetaAE does not induce kinase activity in immunocomplexes of PKD kinase-deficient mutants PKDK618N or PKDD733A. PKD activation in response to PKCthetaAE signaling was completely prevented by treatment with the protein kinase C (PKC) inhibitors, GF I or Ro 31-8220, or by mutation of Ser-744 and Ser-748 to Ala in the kinase activation loop of PKD. Our results show that PKD is a downstream target of the theta isoform of PKC in both COS-7 cells and lymphocytes. The regulation of PKD by PKCtheta reveals a new pathway in the signaling network existing between multiple members of the PKC superfamily and PKD.  相似文献   
102.
Phosphorylation of the Fanconi anemia complementation group A (FANCA) protein is thought to be important for the function of the FA pathway. However, the kinase for FANCA (so-called FANCA-PK) remains to be identified. FANCA has a consensus sequence for Akt kinase near serine 1149 (Ser1149), suggesting that Akt can phosphorylate FANCA. We performed in vitro kinase assays using as substrate either a GST-fusion wild-type (WT) FANCA fragment or a GST-fusion FANCA fragment containing a mutation from serine to alanine at 1149 (FANCA-S1149A). These experiments confirmed that FANCA is phosphorylated at Ser 1149, in vitro. However, (32)P-orthophosphate labeling experiments revealed that FANCA-S1149A was more efficiently phosphorylated than WT-FANCA. Furthermore, phosphorylation of wild-type FANCA was blocked by coexpression of a constitutively active (CA)-Akt and enhanced by a dominant-negative (DN) Akt. Our results suggest that Akt is a negative regulator of FANCA phosphorylation.  相似文献   
103.
1. The Src homology protein tyrosine phosphatase SHP2 is associated with cytoskeletal maintenance, cell division, and cell differentiation, but the role of SHP2 during central nervous system injury requires further definition. We therefore characterized the role of SHP2 during nitric oxide (NO)-induced programmed cell death (PCD).2. Employing primary hippocampal neurons from mice with a dominant negative SHP2 mutant to render the phosphatase site of the SHP2 protein biologically inactive, but functionally capable of binding substrate, neuronal injury was evaluated by trypan blue, DNA fragmentation, membrane phosphatidyl serine (PS) exposure, mitogen-activated protein (MAP) kinase phosphorylation, and cysteine protease activity. NO was administered through the NO generators SIN-1 (300 M) or NOC-9 (300 M).3. Following NO exposure, neuronal survival decreased from 89 ± 3% in untreated controls to 37 ± 2% in wild-type neurons and to 21 ± 4% in SHP2 mutant neurons. In sister cultures following NO exposure, this increased susceptibility to neuronal injury paralleled enhanced genomic DNA degradation and membrane PS exposure with PCD induction increasing in SHP2 mutant neurons by approximately 42% during specified time periods when compared to wild-type neurons. Interestingly, modulation of the MAP kinase p38 appears to represent an initial level of neuronal protection employed by SHP2. In addition, both the rate and degree of caspase 1- and caspase 3-like activities in SHP2 mutant neurons were significantly increased over a 24-h course when compared to wild-type neurons. Inhibition of caspase 1- and caspase 3-like activities reversed the progression of neuronal PCD, suggesting that inhibition of cysteine protease activity is a downstream mechanism for SHP2 to afford neuronal protection.4. Our work supports the premise that the tyrosine phosphatase SHP2 plays a dominant role during NO-induced PCD and may offer a potential molecular checkpoint against neurodegenerative disease.  相似文献   
104.
We have investigated the glycine, serine and leucine metabolism in slices of various rat brain regions of 14-day-old or adult rats, using [1-14C]glycine, [2-14C]glycine, L-[3-14C]serine and L-[U-14C]leucine. We showed that the [1-14C]glycine oxidation to CO2 in all regions studied occurs almost exclusively through its cleavage system (GCS) in brains of both 14-day-old and adults rats. In 14-day-old rats, the highest oxidation of [1-14C]glycine was in cerebellum and the lowest in medulla oblongata. In these animals, the L-[U-14C]leucine oxidation was lower than the [1-14C]glycine oxidation, except in medulla oblongata where both oxidations were the same. Serine was the amino acid that showed lowest oxidation to CO2 in all structure studied. In adult rats brains, the highest oxidation of [1-14C]glycine was in cerebral cortex and the lowest in medulla oblongata. We have not seen difference in the lipid synthesis from both glycine labeled, neither in 14-day-old rats nor in adult ones, indicating that the lipids formed from glycine were not neutral. Lipid synthesis from serine was significantly high than lipid synthesis and from all other amino acids studied in all studied structures. Protein synthesis from L-[U-14C]leucine was significantly higher than that from glycine in all regions and ages studied.  相似文献   
105.
Phosphatidylserine is one of the PKC modulators and thus it may play an important role in signal transduction. Regulation of the synthesis of this phospholipid is not yet clarified. The contrasting reports are possibly related to the existence of different enzymes which, in mammalian tissues, catalyse the exchange between free serine and the nitrogen base of a membrane phospholipid. This study demonstrates that serine base exchange reactions of commercially available lyophilised porcine platelets exhibit similar pH optima, temperature and Ca2+ dependence as observed in fresh tissues. Analysis of fatty acids composition of the three phospholipid classes involved in base exchange reactions also demonstrated a similarity with fresh platelets. Serine and ethanolamine base exchange enzyme activities were assayed in parallel in platelet lysate subjected to preincubation at various temperatures (30-60°C). When dithioerithrol was omitted from the incubation medium, the two base exchange reactions were inhibited with a similar temperature-dependent pattern. Addition of the reducing agent enhanced the sensitivity to preincubation only for the serine base exchange reaction which was inhibited by 80% after preincubation at 45°C. With respect to its regulation, porcine platelet serine base exchange enzyme(s) was inhibited by fluoroalluminate, a widely used G-protein activator, and stimulated by unfractionated heparin. Low mol. wt. heparin did not influence enzyme activity. Unfractionated heparin greatly stimulated SBEE activity assayed at pH 7.4, a pH value far from the optimal pH.  相似文献   
106.
Turkey ovomucoid third domain (OMTKY3) is a canonical inhibitor of serine proteinases. Upon complex formation, the inhibitors fully exposed P1 residue becomes fully buried in the preformed cavity of the enzyme. All 20 P1 variants of OMTKY3 have been obtained by recombinant DNA technology and their equilibrium association constants have been measured with six serine proteinases. To rationalize the trends observed in this data set, high resolution crystal structures have been determined for OMTKY3 P1 variants in complex with the bacterial serine proteinase, Streptomyces griseus proteinase B (SGPB). Four high resolution complex structures are being reported in this paper; the three beta-branched variants, Ile18I, Val18I, and Thr18I, determined to 2.1, 1.6, and 1.7 A resolution, respectively, and the structure of the Ser18I variant complex, determined to 1.9 A resolution. Models of the Cys18I, Hse18I, and Ape18I variant complexes are also discussed. The beta-branched side chains are not complementary to the shape of the S1 binding pocket in SGPB, in contrast to that of the wild-type gamma-branched P1 residue for OMTKY3, Leu18I. Chi1 angles of approximately 40 degrees are imposed on the side chains of Ile18I, Val18I, and Thr18I within the S1 pocket. Dihedral angles of +60 degrees, -60 degrees, or 180 degrees are more commonly observed but 40 degrees is not unfavorable for the beta-branched side chains. Thr18I Ogamma1 also forms a hydrogen bond with Ser195 Ogamma in this orientation. The Ser18I side chain adopts two alternate conformations within the S1 pocket of SGPB, suggesting that the side chain is not stable in either conformation.  相似文献   
107.
A search for the occurrence of the rare pi-helix was performed with Iditis from the Oxford Molecular Group upon the Protein Data Bank. In 8 of the 10 confirmed crystal structures that harbor the pi-helix, its unique conformation has been linked directly to the formation or stabilization of a specific binding site within the protein. In the discussion to follow, the role for each of these eight pi-helices will be addressed in regard to protein function. It is clear upon closer examination that the conformation of the pi-helix has evolved to provide unique structural features within a variety of proteins.  相似文献   
108.
The heat of binding the serine protease, porcine pancreatic elastase, by the inhibitor, turkey ovomucoid third domain, is dependent on the presence of inorganic phosphate. This dependence is saturable and can be accurately modeled as the phosphate binding to a single site on the protease-inhibitor complex; thus, the elastase-ovomucoid system provides a unique opportunity to study phosphate-protein interactions. We have used isothermal titration calorimetry to investigate this binding, thereby providing one of the few complete thermodynamic characterizations of phosphate interacting with proteins. The binding is characterized by a small favorable deltaG degrees, a large unfavorable deltaH degrees, and a positive deltaCp, thermodynamics consistent with the release of water being linked to phosphate binding. These measurements provide insight into the binding of phosphotyrosine containing peptides to SH2 domains by suggesting the energetic consequences of binding phosphate free from other interactions.  相似文献   
109.
Activation of signal transduction pathways in response to serum complement in Naegleria fowleri amebae was investigated. We examined the activation of protein kinases and changes in the phosphorylation state of proteins in N. fowleri stimulated by normal human serum (NHS). To determine differences in phosphorylation of proteins when amebae were exposed to NHS or heat inactivated serum (HIS) lacking complement, amebae were labeled with [32P] orthophosphate. An increase in phosphorylation of relatively low molecular weight proteins was noted in N. fowleri incubated in NHS with a concomitant decrease in phosphorylation of high molecular mass polypeptides. To investigate whether serine/threonine or tyrosine kinases were stimulated by NHS, amebae were treated with protein kinase inhibitors H7, staurosporine or genistein, prior to serum exposure and examined for susceptibility to complement. Treatment with each of these inhibitors resulted in increased complement lysis. Incubation of N. fowleri with genistein specifically inhibited tyrosine phosphorylation of proteins stimulated by NHS. A tyrosine kinase activity assay using exogenous polyGlu-Tyr substrate demonstrated differential activation of tyrosine kinases in amebae treated with NHS when compared to treatment with HIS. The results suggest that activation of protein kinases and subsequent protein phosphorylation are important in mediating complement resistance in N. fowleri.  相似文献   
110.
High K+ was used to depolarize glia and neurons in order to study the effects on amino acid release from and concentrations within the dorsal cochlear nucleus (DCN) of brain slices. The release of glutamate, -aminobutyrate (GABA) and glycine increased significantly during exposure to 50 mM K+, while glutamine and serine release decreased significantly during and/or after exposure, respectively. After 10 min of exposure to 50 mM K+, glutamine concentrations increased in all three layers of DCN slices, to more than 5 times the values in unexposed slices. In the presence of a glutamate uptake blocker, L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC), glutamine concentrations in all layers did not increase as much during 50 mM K+. Similar but smaller changes occurred for serine. Mean ATP concentrations were lower in 50 mM K+-exposed slices compared to control. The results suggest that depolarization, such as during increased neural activity, can greatly affect amino acid metabolism in the cochlear nucleus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号