首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   66篇
  国内免费   1篇
  2020年   2篇
  2019年   6篇
  2018年   7篇
  2017年   8篇
  2016年   8篇
  2015年   15篇
  2014年   31篇
  2013年   11篇
  2012年   14篇
  2011年   17篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1997年   4篇
  1996年   3篇
  1994年   2篇
  1992年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1974年   3篇
  1973年   1篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
91.
A new multifunctional coating for photovoltaic cells incorporating light‐management, UV‐protection, and easy‐cleaning capabilities is presented. Such coating consists of a new photocurable fluorinated polymer embedding a luminescent europium complex that acts as luminescent down‐shifting (LDS) material converting UV photons into visible light. The combination of this system with ruthenium‐free organic dye‐sensitized solar cells (DSSCs) gives a 70% relative increase in power conversion efficiency as compared with control uncoated devices, which is the highest efficiency enhancement reported to date on organic DSSC systems by means of a polymeric LDS layer. Long‐term (>2000 h) weathering tests in real outdoor conditions reveal the excellent stabilizing effect of the new coating on DSSC devices, which fully preserve their initial performance. This excellent outdoor stability is attributed to the combined action of the luminescent material that acts as UV‐screen and the highly photostable, hydrophobic fluoropolymeric carrier that further prevents photochemical and physical degradation of the solar cell components. The straightforward approach presented to simultaneously improve performance and outdoor stability of DSSC devices may be readily extended to a large variety of sensitizer/luminophore combinations, thus enabling the fabrication of highly efficient and extremely stable DSSCs in an easy and versatile fashion.  相似文献   
92.
The refunctionalization of a series of four well‐known industrial laser dyes, based on benzophenoxazine, is explored with the prospect of molecularly engineering new chromophores for dye‐sensitized solar cell (DSC) applications. Such engineering is important since a lack of suitable dyes is stifling the progress of DSC technology. The conceptual idea involves making laser dyes DSC‐active by chemical modification, while maintaining their key property attributes that are attractive to DSC applications. This molecular engineering follows a stepwise approach. First, molecular structures and optical absorption properties are determined for the parent laser dyes: Cresyl Violet ( 1 ), Oxazine 170 ( 2 ), Nile Blue A ( 3 ), Oxazine 750 ( 4 ). These reveal structure‐property relationships which define the prerequisites for computational molecular design of DSC dyes; the nature of their molecular architecture (D‐π‐A) and intramolecular charge transfer. Second, new DSC dyes are computationally designed by the in silico addition of a carboxylic acid anchor at various chemical substitution points in the parent laser dyes. A comparison of the resulting frontier molecular orbital energy levels with the conduction band edge of a TiO2 DSC photoanode and the redox potential of two electrolyte options I?/I3? and Co(II/III)tris(bipyridyl) suggests promise for these computationally designed dyes as co‐sensitizers for DSC applications.  相似文献   
93.
94.
A dye‐sensitized solar cell (DSC) with in situ energy storage capacity is demonstrated using a lead–organohalide electrolyte CH3NH3I·PbCl2 (LOC) to replace the conventional I?/I3? electrolyte. The coupling of lead and iodine in one electrolyte creates a dual‐function rechargeable solar battery that combines the working processes of photoelectrochemical cells with electrochemical batteries. Optimization of the H+ concentration in the electrolyte leads to increased photocharging efficiency and storage. The power conversion efficiency of the LOC–DSC is 8.6% under one sun illumination (AM 1.5, 100 mW cm?2) as a DSC. When operating as a battery, Faraday efficiency can be achieved as high as 81.5% using a bromide‐based CH3NH3Br·PbBr2 (LOB) electrolyte in a DSC configuration. This new cell design suggests a means of combining photovoltaic energy conversion and electrical energy storage.  相似文献   
95.
96.
An amphiphilic swallow-tail bipyridyl ligand, 4,4′-bis(dihexylmethyl)-2,2′-bipyridine, and its heteroleptic ruthenium (II) complex were synthesized starting from dichloro-(p-cymene)ruthenium (II) dimer. The complex was characterized by UV/Vis and FTIR spectrophotometers, NMR spectroscopy and cyclic voltammetry. The performance of this complex as charge transfer photosensitizer in nc-TiO2 based dye sensitized solar cells was studied under standard AM 1.5 sunlight and by using an electrolyte consisting of 0.6 M N-methyl-N-butyl imidazolium iodide (BMII), 0.1 M LiI, 0.05 M I2, 0.5 M 4-tert-butyl pyridine (TBP) in acetonitrile. The complex, CS9 in DMF, gave a photocurrent density of 12.62 mA/cm2, 630 mV open circuit potential and 0.62 fill factor yielding 5.68% efficiency.  相似文献   
97.
Tests were conducted on the performance of UNS S31600 stainless steel (SS) in a natural day/night cycle vs full darkness under conditions of natural marine biofilm accumulation. In quiescent flowing seawater tests in the laboratory as well as under natural immersion in the sea, diffuse sunlight (~10% of natural) counteracted the influence of marine biofilms and produced substantial inhibition of the corrosion of SS. Thus, the probabilities (percentage attack) and propagation rates (depths of attack) in multiple crevice tests were substantially lower in the day/night cycle than in the dark. A benefit was also observed for welded SS in terms of the time to corrosion initiation and the mass loss. SS in the passive state showed broader passive regions, well-defined breakdown potentials and markedly smaller anodic and cathodic current densities under the diurnal cycle. The overall reduction in corrosion is attributed to a combination of electrochemical photoinhibition and simultaneous photoinactivation of microbially mediated metal redox reactions linked to cathodic kinetics. These data offer fresh insights into the behaviour of SS under practical seawater situations and the proposed potential use of illumination in the mitigation of biologically influenced consequences.  相似文献   
98.
99.
100.
A composite separator membrane (CSM) with an A/B/A type layered structure, composed of a microporous electrolyte‐philic poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐HFP) gel layer (A) and a submicrometer porous polyethylene (PE) or a macroporous poly(ethylene terephthalate) (PET) non‐woven matrix (B), is introduced in a dye‐sensitized solar cell (DSSC). Commercially available PE and PET separator membranes (SMs) act as matrices that provide mechanical stability to the DSSC and permanent pore structures for facilitated ion transport. PVdF‐HFP is used as a microporous gelator for improved interfacial contact between the solid SM and the electrodes. The PVdF‐HFP gel impedes the charge recombination process between electron and I3 ? at the TiO2/electrolyte interface, resulting in improved electron lifetimes. The DSSC assembled with the CSM exhibits high initial solar energy conversion efficiency (η, 6.1%) and stable η values over 1400 h, demonstrating good long term stability. The behaviors of the DSSC are attributed to the synergistic factors of the CSM, such as improved ion conductivity, electrolyte affinity, electrolyte retention capability, effective interfacial contact, and plausible passivation of the dyes. This study demonstrates a practical combination of short‐ and long‐term DSSC performance through the introduction of the CSM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号