首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5406篇
  免费   165篇
  国内免费   179篇
  2023年   35篇
  2022年   48篇
  2021年   52篇
  2020年   79篇
  2019年   114篇
  2018年   118篇
  2017年   79篇
  2016年   110篇
  2015年   119篇
  2014年   270篇
  2013年   443篇
  2012年   150篇
  2011年   244篇
  2010年   185篇
  2009年   238篇
  2008年   281篇
  2007年   295篇
  2006年   244篇
  2005年   246篇
  2004年   253篇
  2003年   191篇
  2002年   164篇
  2001年   124篇
  2000年   109篇
  1999年   110篇
  1998年   115篇
  1997年   108篇
  1996年   86篇
  1995年   97篇
  1994年   92篇
  1993年   98篇
  1992年   68篇
  1991年   65篇
  1990年   48篇
  1989年   51篇
  1988年   61篇
  1987年   58篇
  1986年   39篇
  1985年   60篇
  1984年   47篇
  1983年   45篇
  1982年   73篇
  1981年   46篇
  1980年   42篇
  1979年   35篇
  1978年   21篇
  1977年   23篇
  1976年   16篇
  1975年   15篇
  1973年   13篇
排序方式: 共有5750条查询结果,搜索用时 15 毫秒
41.
The maximum growth rate of Trichosporon cutaneum CBS 8111 in chemostat cultures was 0.185 h-1 on ethylamine and 0.21 h-1 on butylamine, that of Candida famata CBS 8109 was 0.32 h-1 on putrescine.The amine oxidation pattern of the ascomycetous strains studied, viz. Candida famata CBS 8109, Stephanoascus ciferrii CBS 4856 and Trichosporon adeninovorans CBS 8244 was independent of the amine that had been used as the growth substrate. It resembled that of benzylamine/putrescine oxidase found in other ascomycetous yeasts. However, differences in pH optimum and substrate specificity were observed between the amine-oxidizing systems of these three species.The amine oxidation pattern of cell-free extracts of Trichosporon cutaneum CBS 8111 varied with the amine that was used as growth substrate. The enzyme system produced by Cryptococcus laurentii CBS 7140 failed to oxidize isobutylamine and benzylamine, and showed a high pH optimum.The synthesis of amine oxidase in the four yeast strains studied was not repressed by ammonium chloride and was weakly repressed by glucose but was strongly repressed if both compounds were present in the growth medium.  相似文献   
42.
Mouse cortical synaptosomal structure and function are altered when exposed to hypoxanthine/xanthine oxidase (HPX/XOD)-generated active oxygen/free radical species. The structure of both the synaptic vesicle and plasma membrane systems are altered by HPX/XOD treatment. The alteration of synaptic vesicle structure is exhibited by a significant increase in the cumulative length of nonsynaptic vesicle membrane per nerve terminal. With respect to the nerve terminal plasma membrane, the length of the perimeter of the synaptosome is increased as the membrane pulls away from portions of the terminal in blebs. The functional lesion generated by HPX/XOD treatment results in a reduction in selective high-affinity gamma-[14C]aminobutyric acid (GABA) uptake. Kinetic analysis of the reduction in high-affinity uptake reveals that the Vmax is significantly altered whereas the Km is not. Preincubation with specific active oxygen/free radical scavengers indicates that the super-oxide radical is directly involved. This radical, most probably in the protonated perhydroxyl form, initiates lipid peroxidative damage of the synaptosomal membrane systems. Low-affinity [14C]GABA transport is unaltered by the HPX/XOD treatment. The apparent ineffectiveness of free radical exposure on low-affinity [14C]GABA transport coupled with its effectiveness in reducing high-affinity transport supports the idea that two separate and different amino acid uptake systems exist in CNS tissue, with the high-affinity being more sensitive (lipid-dependent) and/or more energy-dependent (Na+,K+-ATPase) than the low-affinity system.  相似文献   
43.
Hydrogen peroxide metabolism as an index of water stress tolerance in jute   总被引:4,自引:0,他引:4  
Two species of jute plants Corchorus capsularis L. (cv. JRC 212) and C. olitorius L. (cv. JRO 632) were subjected to water stress for 2 and 4 days by withholding water. The relative water content (RWC) decreased in both plants under water stress but to a greater extent in C. olitorius . The C. olitorius seedlings also showed greater membrane injury than C. capsularis seedlings under water stress as was evident from injury index data. Water stress increased glycolate oxidase (EC 1.1.3.1.) activity more in C. olitorius than in C. capsularis . The activity of superoxide dismutase (SOD, EC 1.15.1.1.) and catalase (EC 1.11.1.6.) decreased under water stress and their decrease was higher in C. olitorius than in C capsularis . The level of hydrogen peroxide and lipid peroxidation also increased in both plants under water stress and the increase was higher in C. olitorius than in C. capsularis seedlings. Under comparable external water stress, C. capsularis seedlings showed lower membrane damage, lower H2O2 accumulation and lower lipid peroxidation than C. olilorius which may be taken as indicative of higher water stress tolerance capacity of the former.  相似文献   
44.
A crude enzyme preparation from mung bean cotyledons was separated into peroxidative and non-peroxidative IAA oxidase on a DEAE-cellulose column. Both fractions differed in their pH optima, Km and Vmax. The Km and Vmax of non-peroxidative IAA oxidase were higher than those of peroxidative IAA oxidase. Peroxidative IAA oxidase showed a linear increase in absorption at 247 and 254 nm after a short lag of 2–3 min. The addition of catalytic amounts of hydrogen peroxide eliminated the lag period and also enhanced the rate of IAA degradation. The non-peroxidative IAA oxidase fraction, however, did not exhibit any significant increase in absorption at 247 and 254 nm and showed a lag period of 5 min which was not affected by hydrogen peroxide. Instead, addition of the same catalytic amount of hydrogen peroxide inhibited the rate of IAA degradation. The peroxidative IAA oxidase fraction exhibited the reaction kinetics characteristic of peroxidase-catalysed IAA degradation. The rate of IAA oxidation by purified non-peroxidative IAA oxidase was very low. The slow rate of catalysis shown by non-peroxidative IAA oxidase appears to be due to the presence of inhibitor(s).  相似文献   
45.
The nature of postsynaptic sites involved in the uptake and metabolism of striatal 3,4-dihydroxyphenylethylamine (dopamine, DA) was investigated. The accumulation of [3H]DA (10(-7) M) into slices of rat striatum was found to be greatly dependent (greater than 99%) on the presence of sodium ion in the incubation medium. However, the formation of the [3H]dihydroxyphenylacetic acid (DOPAC) and [3H]homovanillic acid (HVA) was only partially reduced in the absence of sodium (DOPAC, 27% of control; HVA, 47% of control). Inhibition of carrier-mediated DA neuronal uptake with nomifensine (10(-5) M) significantly decreased DA accumulation (18% of control) and [3H]DOPAC formation (62% of control), but enhanced [3H]HVA production (143% of control). Inhibition of the 5-hydroxytryptamine (5-HT, serotonin) neuronal uptake system with fluoxetine (10(-6) M) or selective 5-HT neuronal lesions with 5,7-dihydroxytryptamine (5,7-DHT) had no effect on [3H]DOPAC or [3H]HVA formed from [3H]DA in the presence or absence of nomifensine. These results demonstrate that the uptake and subsequent metabolism of striatal DA to DOPAC and HVA is only partially dependent on carrier-mediated uptake mechanism(s) requiring sodium ion. These data support our previous findings suggesting a significant role for synaptic glial cell deamination and O-methylation of striatal DA. Further, experiments with fluoxetine or 5,7-DHT suggest that 5-HT neurons do not significantly contribute in the synaptic uptake and metabolism of striatal DA.  相似文献   
46.
1-Methyl-4-phenylpyridinium ion (MPP+) is the product of the metabolic oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by monoamine oxidase (MAO). MPP+ is toxic to 3,4-dihydroxyphenylethylamine (dopamine, DA) neurons in explant cultures of rat embryonic midbrain. Addition of 2.5 microM MPP+ to the feeding medium for 6 days results in significant reduction of the DA levels in the cultures (to 19% of control) as well as in the uptake of [3H]DA (to 32% of control). When the cultures are treated with the MAO inhibitor deprenyl (10 microM) 24 h prior to and during exposure to MPP+, the DA neurons are protected from the toxicity of the drug. In the combined deprenyl plus MPP+ treatment, the levels of DA in the cultures remain at the control range and the [3H]DA uptake is reduced to only 73% of control. These results indicate that MAO is involved in the toxicity of MPP+ on DA neurons.  相似文献   
47.
Dopamine Sulfoconjugation in the Rat Brain: Regulation by Monoamine Oxidase   总被引:2,自引:2,他引:0  
An increase of free 3,4-dihydroxyphenylethylamine (DA, dopamine) in the rat brain such as is found following 3,4-dihydroxyphenylalanine (L-DOPA) administration or an intraventricular injection of free dopamine did not result in DA sulfate formation, despite the presence of phenolsulfotransferase activity in various regions of the brain and the high affinity of DA for this enzyme. However, when rats were pretreated with pargyline, a monoamine oxidase inhibitor, the same treatment with L-DOPA or free DA led to active synthesis of DA sulfate. The increase in DA sulfate was significantly correlated with the degree of monoamine oxidase inhibition and directly proportional to free DA concentrations in the hypothalamus (r = 0.86), striatum (r = 0.54), and brainstem (r = 0.89). The highest ratio of DA sulfate to free DA was found in the hypothalamus, suggesting that sulfoconjugation is most active in this region. Prior treatment of rats with 6-hydroxydopamine did not decrease DA sulfate concentrations, indicating that sulfoconjugation occurs most likely in extraneuronal tissues not destroyed by the neurotoxin. The results are compatible with the notion that phenolsulfotransferase may be highly compartmentalized and that inhibition of monoamine oxidase allows the newly generated free DA to become accessible to the sulfoconjugating enzyme, resulting in increase in DA sulfation.  相似文献   
48.
49.
l-Amino acid oxidase is synthesized in Neurospora crassa in response to three different physiological stimuli: (i) starvation in phosphate buffer, (ii) mating, and (iii) nitrogen derepression in the presence of amino acids. During starvation in phosphate buffer, or after mating, l-amino acid oxidase synthesis occurred in parallel with that of tyrosinase. Exogenous sulfate repressed the formation of the two enzymes in starved cultures, but not in mated cultures. Sulfate repression was relieved by protein synthesis inhibitors, suggesting that the effect of sulfate required the synthesis of a metabolically unstable protein repressor. With amino acids as the sole nitrogen source only l-amino acid oxidase was produced. Under these conditions enzyme synthesis was repressed by ammonium and was insensitive to sulfate. Biochemical evidence suggested that the l-amino acid oxidase formed under the three different conditions was the same protein. Therefore, the expression of l-amino acid oxidase appeared to be under the control of least two regulatory circuits. One, also controlling tyrosinase, seems to respond to developmental signals related to sexual morphogenesis. The other, controlling other enzymes of the nitrogen catabolic system, is used by the organism to obtain nitrogen from alternative sources such as proteins and amino acids.  相似文献   
50.
Abstract Proton translocation associated with electron flow to oxygen has been observed with cells of Nitrobacter winogradskyi in the presence of either potassium ferrocyanide or isoascorbate plus N , N , N ', N ' tetramethyl- p -phenylenediamine. The data are consistent with a proton pumping function for the terminal oxidase, cytochrome aa 3, in this organism as the mechanism for generating a protonmotive force. The failure of previous work with Nitrobacter [4] to detect proton translocation linked to oxidation of nitrite, the physiological substrate, is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号