首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10733篇
  免费   973篇
  国内免费   789篇
  2024年   25篇
  2023年   178篇
  2022年   169篇
  2021年   284篇
  2020年   383篇
  2019年   432篇
  2018年   327篇
  2017年   346篇
  2016年   351篇
  2015年   343篇
  2014年   395篇
  2013年   722篇
  2012年   435篇
  2011年   417篇
  2010年   385篇
  2009年   515篇
  2008年   482篇
  2007年   568篇
  2006年   499篇
  2005年   483篇
  2004年   443篇
  2003年   396篇
  2002年   357篇
  2001年   362篇
  2000年   297篇
  1999年   265篇
  1998年   287篇
  1997年   260篇
  1996年   234篇
  1995年   222篇
  1994年   164篇
  1993年   186篇
  1992年   154篇
  1991年   155篇
  1990年   116篇
  1989年   91篇
  1988年   84篇
  1987年   84篇
  1986年   79篇
  1985年   105篇
  1984年   100篇
  1983年   49篇
  1982年   53篇
  1981年   53篇
  1980年   39篇
  1979年   24篇
  1978年   21篇
  1977年   13篇
  1976年   27篇
  1975年   11篇
排序方式: 共有10000条查询结果,搜索用时 273 毫秒
11.
Neuropeptide Y (NPY) is an evolutionarily conserved neurosecretory molecule implicated in a diverse complement of functions across taxa and in regulating feeding behavior and reproductive maturation in Octopus. However, little is known about the precise molecular circuitry of NPY-mediated behaviors and physiological processes, which likely involve a complex interaction of multiple signal molecules in specific brain regions. Here, we examined the expression of NPY throughout the Octopus central nervous system. The sequence analysis of Octopus NPY precursor confirmed the presence of both, signal peptide and putative active peptides, which are highly conserved across bilaterians. In situ hybridization revealed distinct expression of NPY in specialized compartments, including potential “integration centers,” where visual, tactile, and other behavioral circuitries converge. These centers integrating separate circuits may maintain and modulate learning and memory or other behaviors not yet attributed to NPY-dependent modulation in Octopus. Extrasomatic localization of NPY mRNA in the neurites of specific neuron populations in the brain suggests a potential demand for immediate translation at synapses and a crucial temporal role for NPY in these cell populations. We also documented the presence of NPY mRNA in a small cell population in the olfactory lobe, which is a component of the Octopus feeding and reproductive control centers. However, the molecular mapping of NPY expression only partially overlapped with that produced by immunohistochemistry in previous studies. Our study provides a precise molecular map of NPY mRNA expression that can be used to design and test future hypotheses about molecular signaling in various Octopus behaviors.  相似文献   
12.
Under stress integrated germination test (SIGT), seeds undergo osmo-saline stresses, which enable to detect differences in vigour of long-term stored seeds with high germination percentage (G%). The quality of Brassica villosa subsp. drepanensis seeds stored in a genebank (at ? 20°C for 16 years) was compared with seeds at harvest by standard germination tests (GT), SIGT and cytogenetic analysis. No differences were detected in G% and mean germination time under GT. Conversely, SIGT performed with NaCl ? 0.9 MPa osmotic potential did not influence G% at harvest but reduced that of stored seeds, SIGT at ? 1.4 MPa reduced G% of both. Cytogenetic analysis showed reduction of mitotic index, appearance of chromosomal aberrations and smaller nucleoli in stored seeds compared with harvest seeds germinated in water. SIGT at ? 0.9 MPa had no effect on mitotic index, but increased chromosome aberrations and nucleoli number. SIGT at ? 1.4 MPa inhibited G% of harvest and stored seeds, reduced mitoses in harvest and completely prevented it in stored seeds. The results indicate that GT does not faithfully reflect the quality of stored seeds, with misinterpretation of their vigour, whereas SIGT and cytogenetical parameters are sensitive, reliable and inexpensive methods for early prediction of genetic erosion in germplasm banks.  相似文献   
13.
The primitive land plant life cycle featured the production of spores of unimodal size, a condition called homospory. The evolution of bimodal size distributions with small male spores and large female spores, known as heterospory, was an innovation that occurred repeatedly in the history of land plants. The importance of desiccation‐resistant spores for colonization of the land is well known, but the adaptive value of heterospory has never been well established. It was an addition to a sexual life cycle that already involved male and female gametes. Its role as a precursor to the evolution of seeds has received much attention, but this is an evolutionary consequence of heterospory that cannot explain the transition from homospory to heterospory (and the lack of evolutionary reversal from heterospory to homospory). Enforced outcrossing of gametophytes has often been mentioned in connection to heterospory, but we review the shortcomings of this argument as an explanation of the selective advantage of heterospory. Few alternative arguments concerning the selective forces favouring heterospory have been proposed, a paucity of attention that is surprising given the importance of this innovation in land plant evolution. In this review we highlight two ideas that may lead us to a better understanding of why heterospory evolved. First, models of optimal resource allocation – an approach that has been used for decades in evolutionary ecology to help understand parental investment and other life‐history patterns – suggest that an evolutionary increase in spore size could reach a threshold at which small spores yielding small, sperm‐producing gametophytes would return greater fitness per unit of resource investment than would large spores and bisexual gametophytes. With the advent of such microspores, megaspores would evolve under frequency‐dependent selection. This argument can account for the appearance of heterospory in the Devonian, when increasingly tall and complex vegetative communities presented competitive conditions that made large spore size advantageous. Second, heterospory is analogous in many ways to anisogamy. Indeed, heterospory is a kind of re‐invention of anisogamy within the context of a sporophyte‐dominant land plant life cycle. The evolution of anisogamy has been the subject of important theoretical and empirical investigation. Recent work in this area suggests that mate‐encounter dynamics set up selective forces that can drive the evolution of anisogamy. We suggest that similar dispersal and mating dynamics could have underlain spore size differentiation. The two approaches offer predictions that are consistent with currently available data but could be tested far more thoroughly. We hope to re‐establish attention on this neglected aspect of plant evolutionary biology and suggest some paths for empirical investigation.  相似文献   
14.
15.
The fecundity reduction with aging is referred as the reproductive aging which comes earlier than that of chronological aging. Since humans have postponed their childbearing age, to prolong the reproductive age becomes urgent agenda for reproductive biologists. In the current study, we examined the potential associations of α‐ketoglutarate (α‐KG) and reproductive aging in mammals including mice, swine, and humans. There is a clear tendency of reduced α‐KG level with aging in the follicle fluids of human. To explore the mechanisms, mice were selected as the convenient animal model. It is observed that a long term of α‐KG administration preserves the ovarian function, the quality and quantity of oocytes as well as the telomere maintaining system in mice. α‐KG suppresses ATP synthase and alterations of the energy metabolism trigger the nutritional sensors to down‐regulate mTOR pathway. These events not only benefit the general aging process but also maintain ovarian function and delay the reproductive decline. Considering the safety of the α‐KG as a naturally occurring molecule in energy metabolism, its utility in reproduction of large mammals including humans deserves further investigation.  相似文献   
16.
17.
Abstract. 1. The causes and reproductive consequences of body size variation of Brachinus lateralis Dejean, a parasitic carabid beetle, were investigated.
2. Body size variation occurs within and between sites. Host size has a major influence on body size of the adult.
3. Fecundity is positively correlated with body size. Egg size is not correlated with body size.
4. Mating males tend to be larger than non-mating males. There is a positive correlation of body sizes in mating pairs.
5. Limited opportunity for host choice may maintain size variation despite the advantages of large size.
6. The non-random patterns of mating for a species without obvious intrasexual aggression suggest that subtle means of male-male competition or female choice may be important.  相似文献   
18.
There has been much recent research interest in the existence of a major axis of life‐history variation along a fast–slow continuum within almost all major taxonomic groups. Eco‐evolutionary models of density‐dependent selection provide a general explanation for such observations of interspecific variation in the "pace of life." One issue, however, is that some large‐bodied long‐lived “slow” species (e.g., trees and large fish) often show an explosive “fast” type of reproduction with many small offspring, and species with “fast” adult life stages can have comparatively “slow” offspring life stages (e.g., mayflies). We attempt to explain such life‐history evolution using the same eco‐evolutionary modeling approach but with two life stages, separating adult reproductive strategies from offspring survival strategies. When the population dynamics in the two life stages are closely linked and affect each other, density‐dependent selection occurs in parallel on both reproduction and survival, producing the usual one‐dimensional fast–slow continuum (e.g., houseflies to blue whales). However, strong density dependence at either the adult reproduction or offspring survival life stage creates quasi‐independent population dynamics, allowing fast‐type reproduction alongside slow‐type survival (e.g., trees and large fish), or the perhaps rarer slow‐type reproduction alongside fast‐type survival (e.g., mayflies—short‐lived adults producing few long‐lived offspring). Therefore, most types of species life histories in nature can potentially be explained via the eco‐evolutionary consequences of density‐dependent selection given the possible separation of demographic effects at different life stages.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号