首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9218篇
  免费   756篇
  国内免费   741篇
  10715篇
  2023年   147篇
  2022年   149篇
  2021年   217篇
  2020年   299篇
  2019年   335篇
  2018年   259篇
  2017年   267篇
  2016年   272篇
  2015年   283篇
  2014年   326篇
  2013年   570篇
  2012年   370篇
  2011年   359篇
  2010年   327篇
  2009年   430篇
  2008年   384篇
  2007年   489篇
  2006年   428篇
  2005年   440篇
  2004年   371篇
  2003年   352篇
  2002年   275篇
  2001年   281篇
  2000年   254篇
  1999年   214篇
  1998年   244篇
  1997年   221篇
  1996年   186篇
  1995年   185篇
  1994年   171篇
  1993年   157篇
  1992年   158篇
  1991年   134篇
  1990年   117篇
  1989年   104篇
  1988年   89篇
  1987年   85篇
  1986年   82篇
  1985年   115篇
  1984年   118篇
  1983年   53篇
  1982年   61篇
  1981年   61篇
  1980年   56篇
  1979年   27篇
  1978年   28篇
  1977年   25篇
  1976年   31篇
  1973年   22篇
  1972年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Abstract Lesquerella stonensis (Brassicaceae) is an obligate winter annual endemic to a small portion of Rutherford County in the Central Basin of Tennessee, where it grows in disturbed habitats. This species forms a persistent seed bank, and seeds remain viable in the soil for at least 6 years. Seeds are dormant at maturity in May and are dispersed as soon as they ripen. Some of the seeds produced in the current year, as well as some of those in the persistent seed bank, afterripen during late spring and summer; others do not afterripen and thus remain dormant. Seeds require actual or simulated spring/summer temperatures to come out of dormancy. Germination occurs in September and October. Fully afterripened seeds germinate over a wide range of thermoperiods (15/6–35/20°C) and to a much higher percentage in light (14 h photoperiod) than in darkness. The optimum daily thermoperiod for germination was 30/15°C. Nondormant seeds that do not germinate in autumn are induced back into dormancy (secondary dormancy) by low temperatures (e.g., 5°C) during winter, and those that are dormant do not afterripen; thus seeds cannot germinate in spring. These seed dormancy/ germination characteristics of L. stonensis do not differ from those reported for some geographically widespread, weedy species of winter annuals and thus do not help account for the narrow endemism of this species.  相似文献   
32.
Summary The ability of embryos at different developmental stages to form plants in vitro has been studied in cultivated Cucumis sativus L. and in the wild species C. zeyheri 2 x Sond. and C. metuliferus Naud. On MS medium containing 3.5% sucrose, 0.1 mg 1–1 kinetin (Kn) and 0.01 mg 1–1 indoleacetic acid (IAA), proembryos (0.03–0.05 mm) and early globular embryos (0.05–0.08 mm) from the wild species developed into plants in low frequencies of 8% and 21%, respectively. These embryos should be surrounded by the embryo sac tissue. On the same medium late globular (0.08–0.1 mm) and early heart-stage embryos (0.1–0.3 mm) developed into plants in moderately high and high frequencies of 48% and 83%, respectively. The presence of the embryo sac at these stages was still beneficial, but no longer a prerequisite. Late heart-stage embryos (0.3–0.8 mm) also showed high frequencies of plant formation, 63%, if Kn was applied at a concentration of 1 mg 1–1. From the early cotyledon stage onwards, the frequency of plant formation gradually decreased, reaching a minimum at the late cotyledon stage. Subsequently it began to increase again up to the late maturation stage. The poor plant formation shown by the intermediate-aged embryos could be improved slightly by lowering the sucrose concentration to 0.5% and by increasing the Kn concentration to 10 mg 1–1. Relative to the wild species, embryos of C. sativus showed lower percentages of plant formation. The optimum sucrose concentration was 2% for the heart-stage C. sativus embryos. In all three species the ability to form plants strongly decreased with increasing embryo age, from early to late cotyledon. This is thought to be caused by the increasing tendency of the embryos at these stages to continue in vitro the normal embryo development.  相似文献   
33.
34.
Summary Leucaena leucocephala generally produces pods with more than 7–9 seeds. This is regulated by the stigmatic inhibition of pollen grain germination when the pollen grains are less than a critical number in the stigma. This number-dependent inhibition of pollen grain germination is effected by a pH-dependent proteinaceous inhibitor active at the stigmatic pH. Only when the pollen grains in the stigma exceed the critical number, they inactivate the inhibitor by collectively raising the stigmatic pH and thus overcoming the inhibition. The adaptive significance of such pre-fertilization mechanism for the female in inciting mate competition among the pollen grains is discussed. The evolution of en masse pollen grain dispersal units is explained as a sexual selection strategy by males in response to such stigmatic inhibition by females.  相似文献   
35.
Expression sites of genes encoding (13,14)--glucan 4-glucanohydrolase (EC 3.2.1.73) have been mapped in germinated barley grains (Hordeum vulgare L.) by hybridization histochemistry. A32P-labelled cDNA (copy DNA) probe was hybridized to cryosections of intact barley grains to localize complementary mRNAs. No mRNA encoding (13,14)--glucanase is detected in ungerminated grain. Expression of (13,14)--glucanase genes is first detected in the scutellum after 1 d and is confined to the epithelial layer. At this stage, no expression is apparent in the aleurone. After 2 d, levels of (13,14)--glucanase mRNA decrease in the scutellar epithelium but increase in the aleurone. In the aleurone layer, induction of (13,14)--glucanase gene expression, as measured by mRNA accumulation, progresses from the proximal to distal end of the grain as a front moving away from, and parallel to, the face of the scutellum.Abbreviations cDNA copy DNA - RNase ribonuclease  相似文献   
36.
Herbaceous lomas in the Peruvian coastal desert, of South America establish in spring, and its habitat is limited to the southern or southwestern slopes along the coast that are affected by thick fog. The time of appearance, the duration and the thickness of the fog vary greatly from year to year, so the lomas can grow only in habitats with enough water to, sustain seed germination and plant growth. This paper studies the species composition and density of the buried seed population, of the herbaceous lomas of Loma Ancon in order to clarify the mechanisms of the lomas' establishment. The mean number of species with viable seeds was about, 12 spp. m−2 and that of dead seeds was about 22 spp. m−2. The dominant species wereSolanum tuberiferum, S. pinnatifidum andNolana humifusa, both in viable and dead seeds. Viable seed density was about 5000–8000 seeds m−2, which is comparable with the seed densities of other herbaceous communities. Dead seed density was about 15000–27000 seeds m−2, or nearly three times the viable seed density, because the rate of decomposition was slow in the extremely dry conditions. The net increase of viable seeds by seed production was estimated at about 5000 seeds m−2 in 1980, and the increase in the number of dead seeds was 2200 seeds m−2.  相似文献   
37.
Preharvest seed infection byAspergillus flavus and aflatoxin contamination in selected groundnut genotypes (fourA. flavus-resistant and fourA. flavus-susceptible) were examined in different soil types at several locations in India in 1985–1990. Undamaged mature pods were sampled at harvest and seed examined forA. flavus infection and aflatoxin content in two or more trials at ICRISAT Center on light sandy soils and red sandy loam soils (Alfisols), and on Vertisols, at Anantapur on light sandy soils, and at Dharwad and Parbhani on Vertisols. Rainy season trials (1985–1989) were all rainfed. Post-rainy season trials were irrigated; late-season drought stress (90 days after sowing (DAS) until harvest at 125 DAS) was imposed in the 1987/88 and 1989/90 seasons.A. flavus infection and aflatoxin contamination levels were much lower in seed of all genotypes from Vertisols than in seed from Alfisols across locations and seasons. Vertisols also had significantly lower populations ofA. flavus than Alfisols. There were no marked differences between light sandy soils and red sandy loam soils (Alfisols) in respect of seed infection byA. flavus and aflatoxin contamination. Significant interactions between genotypes and soil types were evident, especially in theA. flavus-susceptible genotypes. Irrespective of soil types,A. flavus-resistant genotypes showed lower levels of seed infection byA. flavus and other fungi than didA. flavus-susceptible genotypes. The significance of the low preharvest aflatoxin risk in groundnuts grown on Vertisols is highlighted.ICRISAT Journal Article No. JA 1122  相似文献   
38.
The maturation of zygotes formed by the fusion of two gametes is the essential part of the diploid phase of the Chlamydomonas reinhardtii sexual life cycle and results in mature zygotes competent to germinate. To understand the molecular mechanisms underlying zygote maturation and the attainment of competence for germination we isolated genomic clones representing three different genes that are specifically expressed in Chlamydomonas reinhardtii zygotes. Accumulation of the RNAs started more than 24 h after mating, setting these genes apart from genes expressed in young zygotes [9]. Upon light-induced germination of zygotes, the mRNAs disappeared. The patterns of RNA accumulation and disappearance were gene-specific and suggested a function of these genes in maturation and/or in initial steps of germination.  相似文献   
39.
An intron-less phaseolin gene [15] was used to express phaseolin polypeptides in transgenic tobacco plants. The corresponding amounts of phaseolin immunoreactive polypeptides and mRNA were similar to those found in plants transformed with a bean genomic DNA sequence that encodes an identical -phaseolin subunit. These results justified the use of the intron-less gene for engineering of the phaseolin protein by oligonucleotide-directed mutagenesis. Each and both of the two Asn residues that serve as glycan acceptors in wild-type phaseolin were modified to prevent N-linked glycosylation. Wild-type (wti–) and mutant phaseolin glycoforms (dgly 1, dgly 2 and dgly 1,2) were localized to the protein body matrix by immunogold microscopy. Although quantitative slot-blot hybridization analysis showed similar levels of phaseolin mRNA in transgenic seed derived from all constructs, seed from the dgly 1 and dgly 2 mutations contained only 41% and 73% of that expressed from the wild-type control; even less (23%) was present in seed of plants transformed with the phaseolin dgly 1,2 gene. Additionally, the profile of 25–29 kDa processed peptides was different for each of the glycoforms, indicating that processing of the full-length phaseolin polypeptides was modified. Thus, although targeting of phaseolin to the protein body was not eliminated by removal of the glycan side-chains, decreased accumulation and stability of the full-length phaseolin protein in transgenic tobacco seed were evident.Abbreviations bp base pair(s) - DAF days after flowering - GUS -glucuronidase - kb kilobase - kDa kilodalton  相似文献   
40.
Three members have been isolated of an additional glutelin gene subfamily, named subfamily B, consisting of about five members per haploid rice genome. Restriction fragment length polymorphism analysis showed major differences between Japonica and Indica lines, indicating the divergence of the subfamily since the split between the two varieties. While corresponding exons of the subfamily B showed 80 to 88% nucleotide sequence homology, those exons were only 60–65% homologous to those of the glutelin A subfamily [15, 19, 24], distinguishing them from the subfamily A. Intron position and derived polypeptide structure, in addition to the nucleotide sequence, confirm the subfamily B members as glutelins. Analysis of RNA from seeds of different stages of development showed that the subfamily B members were expressed at the same time as those of subfamily A, demonstrating coordinated regulation of the two subfamilies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号