首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12359篇
  免费   676篇
  国内免费   426篇
  13461篇
  2023年   146篇
  2022年   183篇
  2021年   279篇
  2020年   249篇
  2019年   279篇
  2018年   353篇
  2017年   245篇
  2016年   227篇
  2015年   315篇
  2014年   505篇
  2013年   732篇
  2012年   402篇
  2011年   454篇
  2010年   406篇
  2009年   519篇
  2008年   650篇
  2007年   610篇
  2006年   653篇
  2005年   550篇
  2004年   523篇
  2003年   473篇
  2002年   456篇
  2001年   317篇
  2000年   294篇
  1999年   297篇
  1998年   289篇
  1997年   258篇
  1996年   247篇
  1995年   253篇
  1994年   228篇
  1993年   244篇
  1992年   198篇
  1991年   186篇
  1990年   186篇
  1989年   152篇
  1988年   138篇
  1987年   118篇
  1986年   94篇
  1985年   98篇
  1984年   140篇
  1983年   82篇
  1982年   85篇
  1981年   83篇
  1980年   70篇
  1979年   54篇
  1978年   44篇
  1977年   26篇
  1976年   24篇
  1975年   12篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
Heat shock proteins (HSP) are a group of highly conserved proteins that regulate protein folding and ameliorate the effects of environmental stress. In the present study, the question of whether or not ascidian oocytes, embryos and larvae constitutively synthesize HSP was studied using HSP 60 and HSP 70 antibodies. Developmental stages obtained from Boltenia villosa, Cnemidocarpa finmarkiensis, Styela montereyensis and Corella willmeriana were examined for HSP using indirect immunocytochemistry. Myoplasm in oocytes and unfertilized eggs reacted with HSP 60 and 70 antibodies. HSP signals dramatically moved into the vegetal egg cytoplasm during ooplasmic segregation and colocalized with the myoplasm. In cleavage-stage embryos, HSP signals were partitioned with the myoplasm into muscle progenitor blastomeres and HSP signals were evident in the tail muscle cells of larvae. Immunoblots of proteins extracted from oocytes, eggs, embryos and larvae indicate that anti-HSP 60 recognizes a single band having an estimated molecular weight of 60 kDa. Egg centrifugation experiments suggest that most of the ascidian myoplasmic HSP are mitochondrial proteins. These results raise an intriguing possibility that mitochondria associated with the myoplasm perform biochemical functions that are unique to the embryonic muscle cell lineage.  相似文献   
112.
113.
Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) serve to transduce information from agonist-bound receptors to effector enzymes or ion channels. Current models of G protein activation-deactivation indicate that the oligomeric GDP-bound form must undergo release of GDP, bind GTP and undergo subunit dissociation, in order to be in active form (GTP bound subunits and free dimers) and to regulate effectors. The effect of receptor occupation by an agonist is generally accepted to be promotion of guanine nucleotide exchange thus allowing activation of the G protein. Recent studies indicate that transphosphorylation leading to the formation of GTP from GDP and ATP in the close vicinity, or even at the G protein, catalysed by membrane-associated nucleoside diphosphate kinase, may further activate G proteins. This activation is demonstrated by a decreased affinity of G protein-coupled receptors for agonists and an increased response of G protein coupled effectors. In addition, a phosphorylation of G protein subunits and consequent phosphate transfer reaction resulting in G protein activation has also been demonstrated. Finally, endogenously formed GTP was preferentially effective in activating some G proteins compared to exogenous GTR The aim of this report is to present an overview of the evidence to date for a transphosphorylation as a means of G protein activation (see also refs [1 and 2] for reviews). (Mol Cell Biochem 157: 593, 1996)Recipient of Servier Investigator Award  相似文献   
114.
A major 27 kDa particulate and a minor 24 kDa cytosolic GTP-binding protein was detected in HEL cells upon incubation with [-32P]GTP of nitrocellulose blots containing polypeptides separated using SDS-PAGE. Addition of lovastatin (30 M) to HEL cells in culture inhibited protein synthesis by 35%. However, this treatment resulted in a 5-fold increase, as quantitated by [-32P]GTP binding, in the amount of cytosolic 24 kDa GTP-binding protein. Addition of cycloheximide plus lovastatin to cells in culture abolished the observed increase in 24 kDa GTP-binding protein. Incubation of cells with lovastatin plus [R,S]-[5-3H]mevalonolactone resulted in the incorporation of radioactivity into several polypeptides in both the cytosolic and particulate fractions including a polypeptide of molecular mass of 24 kDa in the cytosol. The mobility of this 24 kDa isoprenylated protein on SDS-PAGE was identical to that of the GTP-binding protein increased in response to lovastatin. However, the 24 kDa protein remained in the cytosol after undergoing isoprenylation. The 24 kDa protein was distinct from the HEL cell, G25K/CDC42Hs GTP-binding protein and the GTP-binding protein that was a substrate for botulinum toxin C3 catalyzed ADP-ribosylation. Results demonstrate that lovastatin specifically increases the expression of a 24 kDa GTP-binding protein in HEL cells and that, isoprenylation of low molecular mass GTP-binding protein(s) may have function(s) in addition to its role in the targetting of these proteins to cell membrane.  相似文献   
115.
The presence of the pertussis toxin (PTX) insensitive GTP-binding proteins (G-proteins) Gq and/or G11 has been demonstrated in three different prolactin (PRL) and growth hormone (GH) producing pituitary adenoma cell lines. Immunoblocking of their coupling to hormone receptors indicates that Gq and/or G11 confer throliberin (TRH) responsive phospholipase C (PL-C) activity in these cells. The contention was substantiated by immunoprecipitation analyses snowing that anti Gq/11-sera coprecipitated PL-C activity. In essence, only Gq/11 (but neither Gi2, Gi3 nor Go) seems to mediate the TRH-sensitive PL-C activity, while Go may be coupled to a basal or constitutive PL-C activity. Immunoblocking studies imply that the B-complex also, to some extent, may stimulate GH3 pituitary cell line PL-C activity. Finally, the steady state levels of Gq/11 mRNA and protein were downregulated upon long term exposure of the GH3 cells to TRH (but not to vasoactive intestinal peptide = VIP).  相似文献   
116.
The 8-kDa subunit c of theE. coli F0 ATP-synthase proton channel was tested for Ca++ binding activity using a45Ca++ ligand blot assay after transferring the protein from SDS-PAGE gels onto polyvinyl difluoride membranes. The purified subunit c binds45Ca++ strongly with Ca++ binding properties very similar to those of the 8-kDa CF0 subunit III of choloroplast thylakoid membranes. The N-terminal f-Met carbonyl group seems necessary for Ca++ binding capacity, shown by loss of Ca++ binding following removal of the formyl group by mild acid treatment. The dicyclohexylcarbodiimide-reactive Asp-61 is not involved in the Ca++ binding, shown by Ca++ binding being retained in twoE. coli mutants, Asp61Asn and Asp61Gly. The Ca++ binding is pH dependent in both theE. coli and thylakoid 8-kDa proteins, being absent at pH 5.0 and rising to a maximum near pH 9.0. A treatment predicted to increase the Ca++ binding affinity to its F0 binding site (chlorpromazine photoaffinity attachment) caused an inhibition of ATP formation driven by a base-to-acid pH jump in whole cells. Inhibition was not observed when the Ca++ chelator EGTA was present with the cells during the chlorpromazine photoaffinity treatment. An apparent Ca++ binding constant on the site responsible for the UV plus chlorpromazine effect of near 80–100 nM was obtained using an EGTA-Ca++ buffer system to control free Ca++ concentration during the UV plus chlorpromazine treatment. The data are consistent with the notion that Ca++ bound to the periplasimic side of theE. coli F0 proton channel can block H+ entry into the channel. A similar effect occurs in thylakoid membranes, but the Ca++ binding site is on the lumen side of the thylakoid, where Ca++ binding can modulate acid-base jump ATP formation. The Ca++ binding to the F0 and CF0 complexes is consistent with a pH-dependent gating mechanism for control of H+ ion flux across the opening of the H+ channel.This work was supported in part by grants from the Department of Energy and the U.S. Department of Agriculture.On leave from the Institute of Soil Science and Photosynthesis, Russian Academy of Science, Pushchino, Russia.  相似文献   
117.
118.
119.
Tissue-specific expression of two members of the cell wall hydroxyproline-rich glycoprotein (HRGP) family, extensin and potato tuber lectin, was examined by immunolocalization at the light microscope level in various organs (leaves, stems, roots, fruit, tuber) of carrot ( Daucus carota cv. Thumbelina), tomato ( Lycopersicon esclentum cv. Pixie Hybrid II), and potato ( Solanum tuberosum cv. Kennebec). Extensin was prominently expressed in vascular tissue, particularly xylem and also phloem, although virtually all cells displayed some degree of staining which varied as a function of the tissue, organ, and plant under study. Antibodies against potato tuber lectin (PTL) displayed a localization pattern similar to that observed for extensin; notably PTL did not stain cambium but did stain epithelial cells lining secretory cavities. These distribution patterns are consistent with a role for extensin, and possibly PTL, in providing mechanical support in tissues subjected to compression or torsional stress imparted by vascular growth, or by similar stress brought about by transport of vascular fluids.  相似文献   
120.
Although considerable effort has been directed at identifying and understanding the function and regulation of stress-induced proteins in herbaceous plants, reports concerning woody plants are limited. Studies with herbaceous crops have revealed similarities in the types of proteins that accumulate in response to a wide array of abiotic stresses and hormonal cues such as the accumulation of abscisic acid. Many of the identified proteins appear to be related to dehydrins (the D-11 subgroup of late-embryogenesis-abundant proteins). The objective of the present study was to determine if seasonal induction of dehydrins is a common feature in woody plants and to see if seasonal patterns existed for other stress-induced proteins. Bark tissues from eight species of woody plants were collected monthly for a period of 1.5 years. The species included: peach (Prunus persica) cv. Loring; apple (Malus domestica) cv. Golden Delicious; thornless blackberry (Rubus sp.) cv. Chester; hybrid poplar (Populus nigra); weeping willow (Salix babylonica); flowering dogwood (Cornus florida); sassafras (Sassafras albidum); and black locust (Robinia pseudo-acacia). Immunoblots of bark proteins were probed with a polyclonal antibody recognizing a conserved region of dehydrin proteins, and monoclonal antibodies directed against members of the HS70 family of heat-shock proteins. Some proteins, immunologically related to dehydrins, appeared to be constitutive; however, distinct seasonal patterns associated with winter acclimation were also observed in all species. The molecular masses of these proteins varied widely, although similarities were observed in related species (willow and poplar). Identification of proteins using the monoclonal antibodies (HSP70, HSC70, BiP) was more definitive because of their inherent specificity, but seasonal patterns were more variable among the eight species examined. This study represents only a precursory examination of several proteins reported to be stress related in herbaceous plants, but the results indicate that these proteins are also common to woody plants and that further research to characterize their regulation and function in relation to stress adaptation and the perennial life cycle of woody plants is warranted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号