首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4168篇
  免费   181篇
  国内免费   257篇
  4606篇
  2024年   10篇
  2023年   51篇
  2022年   71篇
  2021年   66篇
  2020年   76篇
  2019年   121篇
  2018年   141篇
  2017年   73篇
  2016年   74篇
  2015年   78篇
  2014年   232篇
  2013年   299篇
  2012年   182篇
  2011年   241篇
  2010年   160篇
  2009年   174篇
  2008年   167篇
  2007年   243篇
  2006年   200篇
  2005年   216篇
  2004年   134篇
  2003年   163篇
  2002年   134篇
  2001年   105篇
  2000年   99篇
  1999年   91篇
  1998年   90篇
  1997年   79篇
  1996年   81篇
  1995年   82篇
  1994年   70篇
  1993年   59篇
  1992年   39篇
  1991年   34篇
  1990年   38篇
  1989年   35篇
  1988年   28篇
  1987年   26篇
  1986年   25篇
  1985年   40篇
  1984年   45篇
  1983年   40篇
  1982年   22篇
  1981年   32篇
  1980年   22篇
  1979年   37篇
  1978年   19篇
  1977年   18篇
  1976年   13篇
  1973年   9篇
排序方式: 共有4606条查询结果,搜索用时 0 毫秒
91.
Purple acid phosphatases are metal-containing hydrolases. While their precise biological role(s) is unknown, the mammalian enzyme has been linked in a variety of biological circumstances (e.g., osteoporosis) with increased bone resorption. Inhibition of the human enzyme is a possible strategy for the treatment of bone-resorptive diseases such as osteoporosis. Previously, we determined the crystal structure of pig purple acid phosphatase to 1.55A and we showed that it is a good model for the human enzyme. Here, a study of the pH dependence of its kinetic parameters showed that the pig enzyme is most efficient at pH values similar to those encountered in the osteoclast resorptive space. Based on the observation that phosphotyrosine-containing peptides are good substrates for pig purple acid phosphatase, peptides containing a range of phosphotyrosine mimetics were synthesized. Kinetic analysis showed that they act as potent inhibitors of mammalian and plant purple acid phosphatases, with the best inhibitors exhibiting low micromolar inhibition constants at pH 3-5. These compounds are thus the most potent organic inhibitors yet reported for the purple acid phosphatases.  相似文献   
92.
遗传标记与数量性状基因间连锁关系的分析   总被引:2,自引:0,他引:2  
本文讨论标记基因与数量性状主基因连锁关系的一般分析方法,包括重组值的估计和有关遗传假设的测验。并以我们水稻遗传试验中两个具有互补和重叠作用的卷叶基因和一个矮秆基因试验结果的分析为例作了较详细的示范。  相似文献   
93.
通过生物素与亲和素-酶复合物系统或地高辛与抗地高辛-酶复合物系统可把酶间接标记到探针上.Renz等通过不同的化学方法直接把酶标记到探针上[1~3].耐热性碱性磷酸酯酶FD-TAP(thermostablealkalinephosphatase)具有耐...  相似文献   
94.
Summary Protein-tyrosine phosphatase PTPN3 is a membrane-associated non-receptor protein-tyrosine phosphatase. PTPN3 contains a N-terminal FERM domain, a middle PDZ domain, and a C-terminal phosphatase domain. Upon co-expression of PTPN3, the level of human hepatitis B viral (HBV) RNAs, 3.5 kb, 2.4/2.1 kb, and 0.7 kb transcribed from a replicating HBV expression plasmid is significantly reduced in human hepatoma HuH-7 cells. When the expression of endogenous PTPN3 protein is diminished by specific small interfering RNA, the expression of HBV genes is enhanced, indicating that the endogenous PTPN3 indeed plays a suppressive role on HBV gene expression. PTPN3 can interact with HBV core protein. The interaction is mediated via the PDZ domain of PTPN3 and the carboxyl-terminal last four amino acids of core. Either deletion of PDZ domain of PTPN3 or substitution of PDZ ligand in core has no effect on PTPN3-mediated suppression. These results clearly show that the interaction of PTPN3 with core is not required for PTPN3 suppressive effect. Mutation of 359serine and 835serine of 14-3-3β binding sites to alanine, which slightly reduces the interaction with 14-3-3β, does not influence the PTPN3 effect. In contrast, mutation of the invariant 842cysteine residue in phosphatase domain to serine, which makes the phosphatase activity inactive, does not change its subcellular localization and interaction with core or 14-3-3β, but completely abolishes PTPN3-mediated suppression. Furthermore, deletion of FERM domain does not affect the phosphatase activity or interaction with 14-3-3β, but changes the subcellular localization from cytoskeleton-membrane interface to cytoplasm and nucleus, abolishes binding to core, and diminishes the PTPN3 effect on HBV gene expression. Taken together, these results demonstrate that the phosphatase activity and FERM domain of PTPN3 are essential for its suppression of HBV gene expression. En-Chi Hsu, Yen-Cheng Lin have equal contributions to this work.  相似文献   
95.
采用磷酸铅盐沉淀技术对小麦( Triticum aestivum L.) 珠心细胞衰退过程进行了酸性磷酸酶的超微细胞化学定位研究。结果显示,在未有明显衰退迹象的一些珠心细胞中,酸性磷酸酶只出现在细胞核轻微凝聚的染色质上。随珠心细胞衰退程度的逐渐增大,其衰退特征越来越明显,酸性磷酸酶依次在细胞质中较小液泡、细胞壁、线粒体、质体以及内质网等结构上出现活性反应。紧连胚囊的珠心细胞衰退程度最大,细胞严重变形,酸性磷酸酶定位于细胞绝大部分结构中,但此时变形的细胞核则无酸性磷酸酶活性反应。研究结果表明,小麦珠心细胞的衰退过程中,酸性磷酸酶存在一个有规律的变化,支持珠心细胞的衰退是属于细胞程序性死亡类型的观点  相似文献   
96.
Enzymatic decomposition of gelatin layers on X-ray films and repeated utilization of enzyme for potential industrialization were investigated using thermostable alkaline protease from the alkaliphilic Bacillus sp. B21-2. The decomposition of gelatin layers at 50 °C with the mutant enzyme (Ala187 was replaced by Pro) was higher than those of the wild-type and other mutant enzymes. In the repeated experiment for every 60 min (20 U ml–1, 50 °C), the mutant enzyme could be satisfactorily used five times while three times for the wild-type enzyme.  相似文献   
97.
It has been over 35 years since the first identification of phosphorylation of myosin light chains in skeletal and cardiac muscle. Yet only in the past few years has the role of these phosphorylations in cardiac dynamics been more fully understood. Advances in this understanding have come about with further evidence on the control mechanisms regulating the level of phosphorylation by kinases and phosphatases. Moreover, studies clarifiying the role of light chain phosphorylation in short and long term control of cardiac contractility and as a factor in cardiac remodeling have improved our knowledge. Especially important in these advances has been the use of gain and loss of function approaches, which have not only testedthe role of kinases and phosphatases, but also the effects of loss of RLC phosphorylation sites. Major conclusions from these studies indicate that (i) two negatively-charged post-translational modifications occupy the ventricular RLC N-terminus, with mouse RLC being doubly phosphorylated (Ser 14/15), and human RLC being singly phosphorylated (Ser 15) and singly deamidated(Asn14/16 to Asp); (ii)a distinct cardiac myosin light kinase (cMLCK) and a unique myosin phosphatase targeting peptide (MYPT2) control phosphoryl group transfer;and (iii) ablation of RLC phosphorylationdecreases ventricular power, lengthens the duration of ventricular ejection, and may also modify other sarcomeric proteins (e.g., troponin I) as substrates for kinases and/or phosphatases. A long term effect of low levels of RLC phosphorylation in mouse models also involves remodeling of the heart with hypertrophy, depressed contractility, and sarcomeric disarray. Data demonstrating altered levels of RLC phosphorylation in comparisons of samples from normal and stressed human hearts indicate the significance of these findings in translational medicine.  相似文献   
98.

Objectives

Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2.

Materials and methods

Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR.

Results

BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and nuclear translocation were up-regulated when MG63 cells were cultured with both BMP-2 and HA. Western blot analysis revealed that phosphorylation of ERK protein was diminished by HA. Furthermore, the mRNA expressions of noggin and follistatin induced by BMP-2 were preferentially blocked by HA.

Conclusions

These results indicate that HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation.  相似文献   
99.
In eukaryotes, autophagy is a conserved protein degradation system that degrades cytoplasmic components by encompassing them with double-membrane structures, called autophagosomes, and delivering them to the lytic compartments of vacuoles/lysosomes. Certain Atg proteins are known to be involved in autophagy, yet the identity and function of lipid molecules involved remain largely unknown. We investigated the involvement of sphingolipids in autophagy using Saccharomyces cerevisiae. Inhibiting synthesis of the simplest complex sphingolipid, inositol phosphorylceramide (IPC), resulted in reduced autophagic activities. Similar results were obtained using myriocin, an inhibitor of the first step in sphingolipid synthesis. Our results indicate that sphingolipids, especially IPC, are required for autophagy. Inhibition of sphingolipid synthesis had no effect on formation of Atg12-Atg5 or Atg8-phosphatidylethanolamine conjugates, on maturation of vacuolar proteases, or on formation of the pre-autophagosomal structure (PAS). These results suggest that sphingolipids are not involved in the cellular signaling that leads to formation of the PAS, but may be involved in the process of autophagosome formation.  相似文献   
100.
Short interfering RNA (siRNA) molecules with good gene-silencing properties are needed for drug development based on RNA interference (RNAi). An initial step in RNAi is the activation of the RNA-induced silencing complex RISC, which requires degradation of the sense strand of the siRNA duplex. Although various chemical modifications have been introduced to the antisense strand, modifications to the Argonaute2 (Ago2) cleavage site in the sense strand have, so far, not been described in detail. In this work, novel 2'-F-purine modifications were introduced to siRNAs, and their biological efficacies were tested in cells stably expressing human tartrate-resistant acid phosphatase (TRACP). A validated siRNA that contains both purine and pyrimidine nucleotides at the putative Ago2 cleavage site was chemically modified to contain all possible combinations of 2'-fluorinated 2'-deoxypurines and/or 2'-deoxypyrimidines in the antisense and/or sense strands. The capacity of 2'-F-modified siRNAs to knock down their target mRNA and protein was studied, together with monitoring siRNA toxicity. All 2'-F-modified siRNAs resulted in target knockdown at nanomolar concentrations, despite their high thermal stability. These experiments provide the first evidence that RISC activation not only allows 2'-F modifications at the sense-strand cleavage site, but also increase the biological efficacy of modified siRNAs in vitro.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号