首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4168篇
  免费   181篇
  国内免费   257篇
  4606篇
  2024年   10篇
  2023年   51篇
  2022年   71篇
  2021年   66篇
  2020年   76篇
  2019年   121篇
  2018年   141篇
  2017年   73篇
  2016年   74篇
  2015年   78篇
  2014年   232篇
  2013年   299篇
  2012年   182篇
  2011年   241篇
  2010年   160篇
  2009年   174篇
  2008年   167篇
  2007年   243篇
  2006年   200篇
  2005年   216篇
  2004年   134篇
  2003年   163篇
  2002年   134篇
  2001年   105篇
  2000年   99篇
  1999年   91篇
  1998年   90篇
  1997年   79篇
  1996年   81篇
  1995年   82篇
  1994年   70篇
  1993年   59篇
  1992年   39篇
  1991年   34篇
  1990年   38篇
  1989年   35篇
  1988年   28篇
  1987年   26篇
  1986年   25篇
  1985年   40篇
  1984年   45篇
  1983年   40篇
  1982年   22篇
  1981年   32篇
  1980年   22篇
  1979年   37篇
  1978年   19篇
  1977年   18篇
  1976年   13篇
  1973年   9篇
排序方式: 共有4606条查询结果,搜索用时 15 毫秒
101.
Two new compounds, 5-methyl-2-(2-methylbutanoyl)phloroglucinol 1-O-(6-O-β-D-apiofuranosyl)-β-D-glucopyranoside (1) and trans-2,3-dihydrokaempferol 3-O-(4-O-sulfo)-α-L-arabinopyranoside (2), together with 14 known flavonoids, trans-dihydrokaempferol 3-O-α-L-arabinopyranoside (3), trans-taxifolin 3-O-α-L-arabinofuranoside (4), quercetin 3-O-α-L-rhamnopyranoside (5), quercetin 3'-O-α-L-arabinofuranoside (6), catechin 3-O-α-L-rhamnopyranoside (7), trans-taxifolin 3-O-α-L-arabinopyranoside (8), cis-dihydrokaempferol 3-O-α-L-arabinopyranoside (9), catechin (10), myricetin 3-O-α-L-rhamnopyranoside (11), quercetin 3-O-α-L-arabinopyranoside (12), quercetin 3-O-α-L-arabinofuranoside (13), quercetin 3-O-(3″-galloyl)-α-L-rhamnopyranoside (14), quercetin 3-O-(2″-galloyl)-α-L-rhamnopyranoside (15), and epicatechin 3-O-gallate (16), were isolated from the leaves of Ruprechtia polystachya Griseb. (Polygonaceae). Their structures were established on the basis of extensive 1D- and 2D-NMR experiments as well as MS analyses. All compounds, except 1, showed inhibition of the enzyme glucose-6-phosphatase in intact microsomes.  相似文献   
102.
Activation of 5′-AMP-activated protein kinase (AMPK) is believed to be the mechanism by which the pharmaceuticals, metformin and phenformin, exert their beneficial effects for treatment of type 2 diabetes. These biguanide drugs elevate 5′-AMP, which allosterically activates AMPK and promotes phosphorylation on Thr172 of AMPK catalytic α subunits. Although kinases phosphorylating this site have been identified, phosphatases that dephosphorylate it are unknown. The aim of this study is to identify protein phosphatase(s) that dephosphorylate AMPKα-Thr172 within cells. Our initial data indicated that members of the protein phosphatase ce:sup>/ce:sup>/Mn2+-dependent (PPM) family and not those of the PPP family of protein serine/threonine phosphatases may be directly or indirectly inhibited by phenformin. Using antibodies raised to individual Ppm phosphatases that facilitated the assessment of their activities, phenformin stimulation of cells was found to decrease the ce:sup>/ce:sup>/Mn2+-dependent protein serine/threonine phosphatase activity of Ppm1E and Ppm1F, but not that attributable to other PPM family members, including Ppm1A/PP2Cα. Depletion of Ppm1E, but not Ppm1A, using lentiviral-mediated stable gene silencing, increased AMPKα-Thr172 phosphorylation approximately three fold in HEK293 cells. In addition, incubation of cells with low concentrations of phenformin and depletion of Ppm1E increased AMPK phosphorylation synergistically. Ppm1E and the closely related Ppm1F interact weakly with AMPK and assays with lysates of cells stably depleted of Ppm1F suggests that this phosphatase contributes to dephosphorylation of AMPK. The data indicate that Ppm1E and probably PpM1F are in cellulo AMPK phosphatases and that Ppm1E is a potential anti-diabetic drug target.  相似文献   
103.
The Saccharomyces cerevisiae PAH1-encoded phosphatidate (PA) phosphatase, which catalyzes the dephosphorylation of PA to produce diacylglycerol, controls the bifurcation of PA into triacylglycerol synthesis and phospholipid synthesis. Pah1 is inactive in the cytosol as a phosphorylated form and becomes active on the membrane as a dephosphorylated form by the Nem1–Spo7 protein phosphatase. We show that the conserved Trp-637 residue of Pah1, located in the intrinsically disordered region, is required for normal synthesis of membrane phospholipids, sterols, triacylglycerol, and the formation of lipid droplets. Analysis of mutant Pah1-W637A showed that the tryptophan residue is involved in the phosphorylation-mediated/dephosphorylation-mediated membrane association of the enzyme and its catalytic activity. The endogenous phosphorylation of Pah1-W637A was increased at the sites of the N-terminal region but was decreased at the sites of the C-terminal region. The altered phosphorylation correlated with an increase in its membrane association. In addition, membrane-associated PA phosphatase activity in vitro was elevated in cells expressing Pah1-W637A as a result of the increased membrane association of the mutant enzyme. However, the inherent catalytic function of Pah1 was not affected by the W637A mutation. Prediction of Pah1 structure by AlphaFold shows that Trp-637 and the catalytic residues Asp-398 and Asp-400 in the haloacid dehalogenase-like domain almost lie in the same plane, suggesting that these residues are important to properly position the enzyme for substrate recognition at the membrane surface. These findings underscore the importance of Trp-637 in Pah1 regulation by phosphorylation, membrane association of the enzyme, and its function in lipid synthesis.  相似文献   
104.
The Saccharomyces cerevisiae DIS2S1/GLC7 gene encodes a type 1 protein phosphatase indispensable for cell proliferation. We found that introduction of a multicopy DIS2S1 plasmid impaired growth of cells with reduced activity of the cAMP-dependent protein kinase. In order to understand further the interaction between the two enzymes, a temperature-sensitive mutation in the DIS2S1 gene was isolated. The mutant accumulated less glycogen than wild type at the permissive temperature, indicating that activity of the Dis2s1 protein phosphatase is attenuated by the mutation. Furthermore, the dis2s1 ts mutation was shown to be suppressed by a multicopy plasmid harboring PDE2, a gene for cAMP phosphodiesterase. These results indicate that the Ras-cAMP pathway interacts genetically with the DIS2S1/GLC7 gene.  相似文献   
105.
A new approach for detection of point mutations has been developed. The nonradioactive test system proposed is based on enzymatic ligation of a tandem of three short oligonucleotides B∼pN8+pN4+pN′8 Bio in the presence of a complementary DNA template. The 5′-terminal octanucleotide B∼pN8 is immobilized on polymer methacrylate beads (B) and the 3′-terminal octanucleotide pN′8 Bio contains a biotin residue at the 3′-phosphate. Ligation of the tandem produces a 20-mer biotinylated oligonucleotide on a polymer bead, which is then visualized via subsequent treatments with streptavidin-alkaline phosphatase conjugate and chromogenic substrates. Intense staining of the polymer beads is observed when the amount of DNA template (20-mer oligonucleotide) is as low as ∼10−14 mol. It is shown that practically no polymer staining is observed when the complex formed by the tandem and the 20-mer DNA template contains a mismatch either in the tetranucleotide duplex or in the duplex of octanucleotide immobilized on the beads. This suggests a possibility of using the presented approach in test systems for detection of point mutations in PCR-amplified DNA fragments.  相似文献   
106.
Change in the intracellular concentration of osmolytes or the extracellular tonicity results in a rapid transmembrane water flow in mammalian cells until intracellular and extracellular tonicities are equilibrated. Most cells respond to the osmotic cell swelling by activation of volume-sensitive flux pathways for ions and organic osmolytes to restore their original cell volume. Taurine is an important organic osmolyte in mammalian cells, and taurine release via a volume-sensitive taurine efflux pathway is increased and the active taurine uptake via the taurine specific taurine transporter TauT decreased following osmotic cell swelling. The cellular signaling cascades, the second messengers profile, the activation of specific transporters, and the subsequent time course for the readjustment of the cellular content of osmolytes and volume vary from cell type to cell type. Using Ehrlich ascites tumor cells, NIH3T3 mouse fibroblasts and HeLa cells as biological systems, it is revealed that phospholipase A2-mediated mobilization of arachidonic acid from phospholipids and subsequent oxidation of the fatty acid via lipoxygenase systems to potent eicosanoids are essential elements in the signaling cascade that is activated by cell swelling and leads to release of osmolytes. The cellular signaling cascade and the activity of the volume-sensitive taurine efflux pathway are modulated by elements of the cytoskeleton, protein tyrosine kinases/phosphatases, GTP-binding proteins, Ca2+/calmodulin, and reactive oxygen species and nucleotides. Serine/threonine phosphorylation of the active taurine uptake system TauT or a putative regulator, as well as change in the membrane potential, are important elements in the regulation of TauT activity. A model describing the cellular sequence, which is activated by cell swelling and leads to activation of the volume-sensitive efflux pathway, is presented at the end of the review.  相似文献   
107.
Striatal‐enriched tyrosine phosphatase (STEP) is an important regulator of neuronal synaptic plasticity, and its abnormal level or activity contributes to cognitive disorders. One crucial downstream effector and direct substrate of STEP is extracellular signal‐regulated protein kinase (ERK), which has important functions in spine stabilisation and action potential transmission. The inhibition of STEP activity toward phospho‐ERK has the potential to treat neuronal diseases, but the detailed mechanism underlying the dephosphorylation of phospho‐ERK by STEP is not known. Therefore, we examined STEP activity toward para‐nitrophenyl phosphate, phospho‐tyrosine‐containing peptides, and the full‐length phospho‐ERK protein using STEP mutants with different structural features. STEP was found to be a highly efficient ERK tyrosine phosphatase that required both its N‐terminal regulatory region and key residues in its active site. Specifically, both kinase interaction motif (KIM) and kinase‐specific sequence of STEP were required for ERK interaction. In addition to the N‐terminal kinase‐specific sequence region, S245, hydrophobic residues L249/L251, and basic residues R242/R243 located in the KIM region were important in controlling STEP activity toward phospho‐ERK. Further kinetic experiments revealed subtle structural differences between STEP and HePTP that affected the interactions of their KIMs with ERK. Moreover, STEP recognised specific positions of a phospho‐ERK peptide sequence through its active site, and the contact of STEP F311 with phospho‐ERK V205 and T207 were crucial interactions. Taken together, our results not only provide the information for interactions between ERK and STEP, but will also help in the development of specific strategies to target STEP‐ERK recognition, which could serve as a potential therapy for neurological disorders.

  相似文献   

108.
My career in research has flourished through hard work, supportive mentors, and outstanding mentees and collaborators. The Carman laboratory has contributed to the understanding of lipid metabolism through the isolation and characterization of key lipid biosynthetic enzymes as well as through the identification of the enzyme-encoding genes. Our findings from yeast have proven to be invaluable to understand regulatory mechanisms of human lipid metabolism. Several rewarding aspects of my career have been my service to the Journal of Biological Chemistry as an editorial board member and Associate Editor, the National Institutes of Health as a member of study sections, and national and international scientific meetings as an organizer. I advise early career scientists to not assume anything, acknowledge others’ accomplishments, and pay it forward.  相似文献   
109.
Fragments of cancellous and cortical bone from human maxilla and mandible were cultured by the explant technique. Cells isolated by trypsinization of primary cultures were characterized as osteoblasts on the basis of intracellular alkaline phosphatase activity, the constituents of the extracellular matrix, and response to human parathormone (PTH). In culture, the osteoblasts often gave rise to superposed clumps of large cells whose cytoplasm contained endoplasmic reticulum, numerous mitochondria, vacuoles, and a dense network of intermediate filaments, often at the level of the plasma membrane. In the presence of vitamin C and 1,25-dihydroxyvitamin D3, the osteoblasts produced an extracellular matrix composed of collagen type I and various non-collagenous proteins, including osteocalcin. Biochemical test results were comparable to those reported for osteoblasts of other origins (rat calvaria, human iliac crest), and namely elevated intracellular alkaline phosphatase activity and cAMP accumulation in response to stimulation by human PTH (1–34). Osteoblasts isolated in this manner were cultured in the presence of pure titanium disks to determine the effects of exposure to this metal. Electron microscopy revealed few significant differences in cell growth and specific enzyme activity compared to control osteoblasts grown on plastic dishes, reflecting the excellent biologic and biochemical relationship between the osteoblasts and pure titanium. This experimental system thus appears suitable for biocompatibility studies, and in particular, evaluation of dental implants.  相似文献   
110.
本研究旨在通过转录组分析预测的方法,由地衣芽孢杆菌中筛选获得一种新型双向启动子,鉴定其启动强度。以已知强组成型启动子pShuttle-09为对照,检测其对克劳氏芽孢杆菌碱性蛋白酶基因的表达活性。成功构建了3种重组碱性蛋白酶表达载体及对应的工程菌株。在新型启动子pLA和其反向启动子pLB调控转录下,克劳氏芽孢杆菌碱性蛋白酶表达活性达到164 U/mL和111 U/mL。结果表明,pLA的启动强度明显高于pShuttle-09和pLB,pLA启动子与pLB启动子均可表达碱性蛋白酶。从而为枯草芽孢杆菌表达系统中异源基因的表达提供一个新的方向,也为原核生物中共同表达两种基因提供了新的思路。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号