首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4189篇
  免费   471篇
  国内免费   511篇
  2024年   12篇
  2023年   81篇
  2022年   108篇
  2021年   123篇
  2020年   141篇
  2019年   150篇
  2018年   176篇
  2017年   170篇
  2016年   147篇
  2015年   160篇
  2014年   193篇
  2013年   320篇
  2012年   133篇
  2011年   188篇
  2010年   161篇
  2009年   201篇
  2008年   213篇
  2007年   253篇
  2006年   209篇
  2005年   207篇
  2004年   178篇
  2003年   170篇
  2002年   150篇
  2001年   129篇
  2000年   106篇
  1999年   104篇
  1998年   96篇
  1997年   92篇
  1996年   85篇
  1995年   64篇
  1994年   66篇
  1993年   49篇
  1992年   51篇
  1991年   48篇
  1990年   47篇
  1989年   31篇
  1988年   23篇
  1987年   30篇
  1986年   21篇
  1985年   38篇
  1984年   47篇
  1983年   45篇
  1982年   39篇
  1981年   29篇
  1980年   20篇
  1979年   17篇
  1978年   9篇
  1977年   15篇
  1976年   13篇
  1974年   6篇
排序方式: 共有5171条查询结果,搜索用时 125 毫秒
81.
Summary Nearly complete backbone 1H, 15N and 13C signal assignments are reported for -hydroxydecanoyl thiol ester dehydrase, a 39-kDa homodimer containing 342 amino acids. Although 15N relaxation data show that the protein has a rotational correlation time of 18 ns, assignments were derived from triple-resonance experiments recorded at 500 MHz and pH 6.8, without deuteration. The Chemical Shift Index, CSI, identified two long helices and numerous -strands in dehydrase. The CSI predictions are in close agreement with the secondary structure identified in the recently derived crystal structure, particularly when one takes account of the numerous bulges in the -strands. The assignment of dehydrase and a large deuterated protein [Yamazaki et al. (1994) J. Am. Chem. Soc., 116, 11655–11666] suggest that assignment of 40–60 kDa proteins is feasible. Hence, further progress in understanding the chemical shift/structure relationship could open the way to determine the structures of such large proteins. Supplementary Material is available on request, comprising Table S1 listing the spectral parameters; Table S2 listing the assignments; Fig. S1 showing the 2D 1H–15N HSQC spectrum; Fig. S2 showing sequential NOEs, secondary shifts, H-exchange and 3JHN data; and Fig. S3 showing plots of the H, C, CO and C Chemical Shift Indexes.To whom correspondence should be addressed.  相似文献   
82.
Summary The 1H, 15N and 13C backbone and 1H and 13C beta resonance assignments of the long-chain flavodoxin from Azotobacter chroococcum (the 20-kDa nifF product, flavodoxin-2) in its oxidized form were made at pH 6.5 and 30°C using heteronuclear multidimensional NMR spectroscopy. Analysis of the NOE connectivities, together with amide exchange rates, 3JHnH coupling constants and secondary chemical shifts, provided extensive solution secondary structure information. The secondary structure consists of a five-stranded parallel -sheet and five -helices. One of the outer regions of the -sheet shows no regular extended conformation, whereas the outer strand 4/6 is interrupted by a loop, which is typically observed in long-chain flavodoxins. Two of the five -helices are nonregular at the N-terminus of the helix. Loop regions close to the FMN are identified. Negatively charged amino acid residues are found to be mainly clustered around the FMN, whereas a cluster of positively charged residues is located in one of the -helices. Titration of the flavodoxin with the Fe protein of the A. chroococcum nitrogenase enzyme complex revealed that residues Asn11, Ser68 and Asn72 are involved in complex formation between the flavodoxin and Fe protein. The interaction between the flavodoxin and the Fe protein is influenced by MgADP and is of electrostatic nature.Abbreviations SQ semiquinone - FMN riboflavin 5-monophosphate; nif, nitrogen fixation - TSP 3-(trimethylsilyl)propionate sodium salt - DSS 2,2-dimethyl-2-silapentane-5-sulfonate sodium salt Supplementary Material is available on request, comprising a Materials and Methods section for the expression and purification of the A. chroococcum flavodoxin, a Table S1 containing the parameters of the titration of A. chroococcum flavodoxin with the Fe protein, and a Table S2 containing the 15N, HN, 13C, 1H, 13C, 1H and 13CO chemical shifts.To whom correspondence should be addressed.  相似文献   
83.
The effects of primary electron-donor and electron-acceptor substrates on the kinetics of TCA biodegradation in sulfate-reducing and methanogenic biofilm reactors are presented. Of the common anaerobic electron-donor substrates that were tested, only formate stimulated the TCA biodegradation rate in both reactors. In the sulfate-reducing reactor, glucose also stimulated the reaction rate. The effects of formate and sulfate on TCA biodegradation kinetics were analyzed using a model for primary substrate effects on reductive dehalogenation. Although some differences between the model and the data are evident, the observed responses of the TCA degradation rate to formate and sulfate were consistent with the model. Formate stimulated the TCA degradation rate in both reactors over the entire range of TCA concentrations that were studied (from 50 g TCA/L to 100 mg TCA/L). The largest effects occurred at high TCA concentrations, where the dehalogenation kinetics were zero order. Sulfate inhibited the first-order TCA degradation rate in the sulfate-reducing reactor, but not in the methanogenic reactor. Molybdate, which is a selective inhibitor of sulfate reduction, stimulated the TCA removal rate in the sulfate-reducing reactor, but had no effect in the methanogenic reactor.  相似文献   
84.
Talbot, N. J., Vincent, P., and Wildman, H. G. 1996. The influence of genotype and environment on the physiological and metabolic diversity ofFusarium compactum. Fungal Genetics and Biology20,254–267. Fungal species produce a large variety of secondary metabolites which are of considerable interest to the pharmaceutical industry. It is clear that the secondary metabolite production of a species varies significantly in strains from different geographic locations and from different habitats. The influence of genotype and environment on metabolite production is, however, poorly understood. In this study we examined the influence of genotypic variability, physiological variability, environmental location, and habitat on metabolite production byFusarium compactum.Isolates of the fungus from two geographic locations and two distinct habitat types were examined for growth on 95 different carbon sources, and genotypic variability was determined using RAPDs and rDNA–RFLP analysis. In a blind test secondary metabolite production was assessed using HPLC profiles of methanolic cell extracts. A number of correlations were observed between genotypic groupings, as determined using parsimony, and specific metabolite production. Similar correlations were also observed with physiological groups although genotypic analysis proved to be a more sensitive predictor of metabolite variability. The data suggest a complex relationship between environment, genotype, and metabolite production but highlight the use of genetic screening as a means of optimizing the chances of identifying a wide range of metabolites from a given species.  相似文献   
85.
Bioreactors for surface-immobilized cells   总被引:2,自引:0,他引:2  
Surface immobilization of plant cells avoids the problem of hydrodynamic or shear stress, which tends to be characteristic of suspended cells cultured in typical, mechanically agitated bioreactor systems. Surface immobilization also promotes the natural tendency for plant cells to aggregate, which may improve the synthesis and accumulation of secondary metabolites. In addition, exchange of medium is made simple in surface-immobilized systems, and extracellular secondary products are easily recovered on a continuous basis. However, problems related to regulation of the thickness of the immobilized cell layer, maintenance of the biomass in a productive condition, and vacuolar retention of secondary products have yet to be resolved satisfactorily. This review focusses on two surface-immobilization technologies, differing primarily in the nature and the configuration of the inert support. Prototypes of these designs have been applied to a variety of plant cell systems at bioreactor volumes up to 20 litres. Results obtained with several alternative technologies are also summarized.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - SIPCB surface-immobilized plant cell bioreactor National Research Council of Canada publication no. 38460  相似文献   
86.
Gas phase composition effects on suspension cultures of Taxus cuspidata   总被引:2,自引:0,他引:2  
The effect of different concentrations and combinations of oxygen, carbon dioxide, and ethylene on cell growth and taxol production in suspension cultures of Taxus cuspidata was investigated using several factorial design experiments. Low head space oxygen concentration (10% v/v) promoted early production oftaxol. High carbon dioxide concentration (10% v/v) inhibited taxol production. The most effective gas mixture composition in terms of taxol production was 10% (v/v) oxygen, 0.5% (v/v) carbon dioxide, and 5 ppm ethylene. Cultures grown underambient concentration of oxygen had a delayed uptake of glucose and fructose compared to cultures grown under 10% (v/v) oxygen. Average calcium uptake rates into the cultured cells decreased and average phosphate uptake rates increased as ethylene was increased from 0 to 10 ppm. These results may indicate that gas composition alters partitioning of nutrients, which in turn affects secondary metabolite production. (c) 1995 John Wiley & Sons, Inc.  相似文献   
87.
The abundance, generation time and production ofChironomus salinarius larvae in a lagoon fish-pond system in the Bay of Cádiz were studied by taking monthly samples at 3 sites during 1991 and 1992. Numerical abundance and biomass of larvae showed considerable spatial, seasonal and interannual variation (ANCOVAs,P<0.001). The maximum mean annual density was 7048 larvae m–2, and corresponded to a biomass of 3.08 g dry weight (DW) m–2. It was recorded at the site with the lowest rate of water renewal. Seasonal patterns were similar at all sites, with main annual peaks of abundance and biomass in autumn-early winter. Chironomid density was positively related to the biomass of benthic macroalgae (P<0.001). The population studied was multivoltine with a probable average of five generations per year, with overlapping cohorts and a predominance of third- and fourth-instar larvae. Estimates of annual production ranged between 72.2 g DW m–2 yr–1 at the site with the lowest rate of water renewal in 1991 and 0.1 g DW m–2 yr–1 at the site with the highest rate of water renewal in 1992. Mean annual production and the production/biomass ratio for the system was estimated to be 16.8 g DW m–2 yr–1 and 12.7, respectively. Possible factors leading to the observed density fluctuations are discussed, as well as possible sources of error in production estimates.  相似文献   
88.
The isolated, 101-residue long C-terminal (so called F2) fragment of the beta chain from Escherichia coli tryptophan synthase was shown previously to fold into an ensemble of conformations that are condensed, to contain large amounts of highly dynamic secondary structures, and to behave as a good model of structured intermediates that form at the very early stages of protein folding. Here, solvent perturbations were used to investigate the forces that are involved in stabilizing the secondary structure (monitored by far-UV CD) and the condensation of the polypeptide chain (monitored by dynamic light scattering) in isolated F2. It was observed that neither the ionic strength, nor the pH (between 7 and 10), nor salts of the Hofmeister series affected the global secondary structure contents of F2, whereas some of these salts affected the collapse slightly. Addition of trifluoroethanol resulted in a large increase in both the amount of secondary structure and the Stokes radius of F2. Conversely, F2 became more condensed upon raising the temperature from 4 to 60 degrees C, whereas in this temperature range, the secondary structure undergoes significant melting. These observations lead to the conclusion that, in isolated F2, there is no coupling between the hydrophobic collapse and the secondary structure. This finding will be discussed in terms of early events in protein folding.  相似文献   
89.
Human glutaredoxin is a member of the glutaredoxin family, which is characterized by a glutathione binding site and a redox-active dithiol/disulfide in the active site. Unlike Escherichia coli glutaredoxin-1, this protein has additional cysteine residues that have been suggested to play a regulatory role in its activity. Human glutaredoxin (106 amino acid residues, M(r) = 12,000) has been purified from a pET expression vector with both uniform 15N labeling and 13C/15N double labeling. The combination of three-dimensional 15N-edited TOCSY, 15N-edited NOESY, HNCA, HN(CO)CA, and gradient sensitivity-enhanced HNCACB and HNCO spectra were used to obtain sequential assignments for residues 2-106 of the protein. The gradient-enhanced version of the HCCH-TOCSY pulse sequence and HCCH-COSY were used to obtain side chain 1H and 13C assignments. The secondary structural elements in the reduced protein were identified based on NOE information, amide proton exchange data, and chemical shift index data. Human glutaredoxin contains five helices extending approximately from residues 4-10, 24-36, 53-64, 83-92, and 94-104. The secondary structure also shows four beta-strands comprised of residues 15-19, 43-48, 71-75, 78-80, which form a beta-sheet almost identical to that found in E. coli glutaredoxin-1. Complete 1H, 13C, and 15N assignments and the secondary structure of fully reduced human glutaredoxin are presented. Comparison to the structures of other glutaredoxins is presented and differences in the secondary structure elements are discussed.  相似文献   
90.
The helix content of a series of peptides containing single substitutions of the 20 natural amino acids in a new designed host sequence, succinyl-YSEEEEKAKKAXAEEAEKKKK-NH2, has been determined using CD spectroscopy. This host is related to one previously studied, in which triple amino acid substitutions were introduced into a background of Glu-Lys blocks completely lacking alanine. The resulting free energies show that only Ala and Glu- prove to be helix stabilizing, while all other side chains are neutral or destabilizing. This agrees with results from studies of alanine-rich peptide modela, but not the previous Glu-Lys block oligomers in which Leu and Met also stabilize helix. The helix propensity scale derived from the previous block oligomers correlated well with the frequencies of occurrence of different side chains in helical sequences of proteins, whereas the values from the present series do not. The role of context in determining scales of helix propensity values is discussed, and the ability of algorithms designed to predict helix structure from sequence is compared.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号