全文获取类型
收费全文 | 4086篇 |
免费 | 525篇 |
国内免费 | 385篇 |
专业分类
4996篇 |
出版年
2024年 | 20篇 |
2023年 | 87篇 |
2022年 | 73篇 |
2021年 | 108篇 |
2020年 | 197篇 |
2019年 | 214篇 |
2018年 | 202篇 |
2017年 | 173篇 |
2016年 | 169篇 |
2015年 | 175篇 |
2014年 | 194篇 |
2013年 | 248篇 |
2012年 | 180篇 |
2011年 | 179篇 |
2010年 | 151篇 |
2009年 | 220篇 |
2008年 | 212篇 |
2007年 | 205篇 |
2006年 | 203篇 |
2005年 | 174篇 |
2004年 | 146篇 |
2003年 | 125篇 |
2002年 | 122篇 |
2001年 | 97篇 |
2000年 | 100篇 |
1999年 | 80篇 |
1998年 | 83篇 |
1997年 | 75篇 |
1996年 | 60篇 |
1995年 | 57篇 |
1994年 | 40篇 |
1993年 | 49篇 |
1992年 | 53篇 |
1991年 | 42篇 |
1990年 | 40篇 |
1989年 | 39篇 |
1988年 | 31篇 |
1987年 | 38篇 |
1986年 | 42篇 |
1985年 | 35篇 |
1984年 | 55篇 |
1983年 | 46篇 |
1982年 | 47篇 |
1981年 | 26篇 |
1980年 | 28篇 |
1979年 | 21篇 |
1978年 | 7篇 |
1977年 | 8篇 |
1976年 | 5篇 |
1973年 | 7篇 |
排序方式: 共有4996条查询结果,搜索用时 0 毫秒
71.
武夷山五种竹子叶、枝、秆碳氮磷化学计量对生长阶段和海拔的响应 总被引:1,自引:0,他引:1
探究竹子化学计量特征对生长阶段和海拔的响应对于了解其生理生态特征及生长适应策略至关重要。对武夷山沿海拔分布的五种典型竹子叶、枝、秆的碳(C)、氮(N)、磷(P)含量及化学计量内稳态指数(H)进行两个生长阶段的测定。结果显示不论生长阶段的变化,各器官N、P含量的变异系数均显著大于C含量,且秆的N、P含量变异系数要显著大于叶片和竹枝,但不同生长阶段并未改变秆的N∶P (12∶1)。毛竹4月份枝和8月份叶的N、P含量均随海拔增加而降低,而箬竹叶的N、P含量均随海拔增加而增加。海拔和生长阶段的交互作用显著提高了竹秆N含量对生长阶段变化的响应。竹叶N和秆的N、P含量在不同生长阶段具有明显的内稳性调控机制,但竹枝N、P的内稳性特征表现不明显。总而言之,这些结果一方面反映了武夷山五种竹子偏向于选择维持叶N含量的内稳态机制,另一方面调节秆N、P含量的协变来应对海拔和生长阶段变化中养分的利用策略。 相似文献
72.
73.
Climate change is driving adaptive shifts within species, but research on plants has been focused on phenology. Leaf morphology has demonstrated links with climate and varies within species along climate gradients. We predicted that, given within-species variation along a climate gradient, a morphological shift should have occurred over time due to climate change. We tested this prediction, taking advantage of latitudinal and altitudinal variations within the Adelaide Geosyncline region, South Australia, historical herbarium specimens (n = 255) and field sampling (n = 274). Leaf width in the study taxon, Dodonaea viscosa subsp. angustissima, was negatively correlated with latitude regionally, and leaf area was negatively correlated with altitude locally. Analysis of herbarium specimens revealed a 2 mm decrease in leaf width (total range 1-9 mm) over 127 years across the region. The results are consistent with a morphological response to contemporary climate change. We conclude that leaf width is linked to maximum temperature regionally (latitude gradient) and leaf area to minimum temperature locally (altitude gradient). These data indicate a morphological shift consistent with a direct response to climate change and could inform provenance selection for restoration with further investigation of the genetic basis and adaptive significance of observed variation. 相似文献
74.
Yutong Lin Luhui Kuang Songbo Tang Zhijian Mou Oliver L. Phillips Hans Lambers Zhanfeng Liu Jordi Sardans Josep Peñuelas Yuan Lai Mingxian Lin Dexiang Chen Yuanwen Kuang 《Journal of Plant Ecology》2021,14(6):1115
热带森林优势种青冈叶片气孔、解剖和形态性状与气候、土壤因子的关联
了解优势树种叶片多水平的功能性状沿海拔梯度的变化及其内在关联,有助于预测优势种应对气候变化的响应与适应。本文研究了青冈属树种叶片气孔、解剖和形态性状沿海拔梯度的变化及其与环境调控因子的关联,探究了其生态策略是否随海拔发生改变。在海南尖峰岭热带森林,沿海拔梯度(400–1400 m)采集了6种常绿青冈:竹叶青冈(Cyclobalanopsis bambusaefolia)、雷公青冈(C. hui)、托盘青冈 (C. patelliformis)、饭甄青冈(C. fleuryi)、吊罗山青冈(C. tiaoloshanica)和亮叶青冈(C. phanera)叶片,用于气孔、解剖和形态性状的测定。研究结果表明,随海拔升高,青冈树种叶片气孔密度、气孔孔隙度指数和叶面积显著增加,但海绵组织厚度比和干物质含量则显着降低。叶片气孔、解剖和形态性状沿海拔梯 度的变化主要受年均温、年降水量和土壤pH 值调控。在低海拔和高海拔处,青冈属采取“耐受”和“竞 争”策略,而在中海拔处,则是“竞争”策略。土壤磷含量和土壤pH 值随海拔的变化可能是驱动其生态 策略转变的主要原因。该结果揭示,热带森林优势树种青冈可通过从气孔细胞-组织解剖结构-叶片水平功能性状的改变来响应环境变化。 相似文献
75.
Shira Penner Barak Dror Iris Aviezer Yamit Bar‐Lev Ayelet Salman‐Minkov Terezie Mandakova Petr marda Itay Mayrose Yuval Sapir 《植物分类学报:英文版》2020,58(2):189-199
Local adaptation of plants along environmental gradients provides strong evidence for clinal evolution mediated by natural selection. Plants have developed diverse strategies to mitigate stress, for example, drought escape is a phenological strategy to avoid drought stress, while polyploidy was proposed as a genomic adaptation to stress. Polyploidy as an adaptation to aridity (an environmental parameter integrating temperature and precipitation) was previously documented in annual Brachypodium spp. (Poaceae) in the Western Mediterranean. Here, we examined whether polyploidy or phenology are associated with aridity in annual Brachypodium spp. along the aridity gradient in the Eastern Mediterranean. Using flow cytometry, we determined ploidy levels of plants from natural populations along the Israeli gradient, spanning ∼424 km from mesic Mediterranean to extreme desert climates. In a common garden we recorded time of seedling emergence, flowering and senescence. We tested whether the proportion of allotetraploids in the populations and phenological traits were associated with aridity. Contrary to a previous study in the Western Mediterranean, we found no effect of aridity on the proportion of allotetraploids and diploids within populations. Interestingly, phenology was associated with aridity: time of emergence was later, while flowering and senescence were earlier in desert plants. Our results indicate that in the Eastern Mediterranean, adaptation of Brachypodium to aridity is mediated mainly by phenology, rather than ploidy level. Therefore, we suggest that genome duplication is not the main driver of adaptation to environmental stress; rather, phenological change as a drought escape mechanism may be the major adaptation. 相似文献
76.
Changes in Patterns of Species Co‐occurrence across Two Tropical Cloud Forests Differing in Soil Nutrients and Air Temperature 下载免费PDF全文
Wenxing Long Menghui Xiong Runguo Zang Brandon S. Schamp Xiaobo Yang Yi Ding Yunfeng Huang Yangzhou Xiang 《Biotropica》2015,47(4):416-423
Patterns of co‐occurrence of species are increasingly used to examine the contribution of biotic interactions to community assembly. We assessed patterns of co‐occurrence at four scales, in two types of tropical cloud forests in Hainan Island, China (tropical montane evergreen forests, TMEF and tropical dwarf forests, TDF) that varied significantly in soil nutrients and temperature. We tested if the patterns of co‐occurrence changed when we sorted species into classes by abundance and diameter at breast height (dbh). Co‐occurrence differed by forest type and with plot size, with significant species aggregation observed across larger plots in TDF and patterns of species segregation observed in smaller plots in TMEF. Analyses of differential abundance and dbh classes also showed that smaller plots in TMEF tend to have negative co‐occurrence patterns, but larger plots in TDF tend to show patterns of aggregation, suggesting competitive and facilitative interactions. This underscores the scale‐dependence of the processes contributing to community assembly. Furthermore, it is consistent with predictions of the stress gradient hypothesis that facilitation will be most important in biological systems subject to abiotic stress, while competition will be more important in less abiotically stressful habitats. Our results clearly demonstrate that these two types of tropical cloud forest exhibit different co‐occurrence patterns, and that these patterns are scale‐dependent, though independent of plant abundance and size class. 相似文献
77.
The East Kleinemonde Estuary, on the south-east coast of South Africa, typically opens for only short periods, usually <10 days. During a nine-month study in 2006, marine influence persisted for a near-continuous period of three months. This provided an opportunity to explore potential changes in the structure and pattern of the subtidal estuarine macrozoobenthic community. Salinity changes were minimal after mouth opening, decreasing by c. 4 and 8 in the lower and upper estuary, respectively. Salinity decrease was due to river dominance over tidal influence. Two biotic assemblages, structured by sediment characteristics, typified the community throughout the study: a sand-associated group near the mouth and a mud-associated group upstream. Amphipods were proportionally the most abundant group within each assemblage and on each sampling occasion. At the species level, high variability typified the community, with no trends or patterns observed. However, species richness declined from 27–30 to 23 after mouth opening. The number of species returned to former levels at the time of the final survey and just before final mouth closure. An analysis of the subtidal macrozoobenthos in the East Kleinemonde and other temporarily open/closed estuaries (TOCEs) of similar size in the bioregion indicated that communities were typically composed of relatively few, broadly tolerant euryhaline species with no species unique to TOCEs. 相似文献
78.
What determines the vertical distribution of phytoplankton in different aquatic environments remains an open question. To address this question, we develop a model to explore how phytoplankton respond through growth and movement to opposing resource gradients and different mixing conditions. We assume stratification creates a well-mixed surface layer on top of a poorly mixed deep layer and nutrients are supplied from multiple depth-dependent sources. Intraspecific competition leads to a unique strategic equilibrium for phytoplankton, which allows us to classify the distinct vertical distributions that can exist. Biomass can occur as a benthic layer (BL), a deep chlorophyll maximum (DCM), or in the mixed layer (ML), or as a combination of BL+ML or DCM+ML. The ML biomass can be limited by nutrients, light, or both. We predict how the vertical distribution, relative resource limitation, and biomass of phytoplankton will change across environmental gradients. We parameterized our model to represent potentially light and phosphorus limited freshwater lakes, but the model is applicable to a broad range of vertically stratified systems. Increasing nutrient input from the sediments or to the mixed layer increases light limitation, shifts phytoplankton towards the surface, and increases total biomass. Increasing background light attenuation increases light limitation, shifts the phytoplankton towards the surface, and generally decreases total biomass. Increasing mixed layer depth increases, decreases, or has no effect on light limitation and total biomass. Our model is able to replicate the diverse vertical distributions observed in nature and explain what underlying mechanisms drive these distributions. 相似文献
79.
Pushing, pulling and trapping--modes of motor protein supported protein translocation 总被引:1,自引:0,他引:1
Protein translocation across the cellular membranes is an ubiquitous and crucial activity of cells. This process is mediated by translocases that consist of a protein conducting channel and an associated motor protein. Motor proteins interact with protein substrates and utilize the free energy of ATP binding and hydrolysis for protein unfolding, translocation and unbinding. Since motor proteins are found either at the cis- or trans-side of the membrane, different mechanisms for translocation have been proposed. In the Power stroke model, cis-acting motors are thought to push, while trans-motors pull on the substrate protein during translocation. In the Brownian ratchet model, translocation occurs by diffusion of the unfolded polypeptide through the translocation pore while directionality is achieved by trapping and refolding. Recent insights in the structure and function of the molecular motors suggest that different mechanisms can be employed simultaneously. 相似文献
80.
Plant nitrogen dynamics and nitrogen-use strategies under altered nitrogen seasonality and competition 总被引:2,自引:0,他引:2
BACKGROUND AND AIMS: Numerous studies have examined the effects of climatic factors on the distribution of C(3) and C(4) grasses in various regions throughout the world, but the role of seasonal fluctuations in temperature, precipitation and soil N availability in regulating growth and competition of these two functional types is still not well understood. This report is about the effects of seasonality of soil N availability and competition on plant N dynamics and N-use strategies of one C(3) (Leymus chinensis) and one C(4) (Chloris virgata) grass species. METHODS: Leymus chinensis and C. virgata, two grass species native to the temperate steppe in northern China, were planted in a monoculture and a mixture under three different N seasonal availabilities: an average model (AM) with N evenly distributed over the growing season; a one-peak model (OM) with more N in summer than in spring and autumn; and a two-peak model (TM) with more N in spring and autumn than in summer. KEY RESULTS: The results showed that the altered N seasonality changed plant N concentration, with the highest value of L. chinensis under the OM treatment and C. virgata under the TM treatment, respectively. N seasonality also affected plant N content, N productivity and N-resorption efficiency and proficiency in both the C(3) and C(4) species. Interspecific competition influenced N-use and resorption efficiency in both the C(3) and C(4) species, with higher N-use and resorption efficiency in the mixture than in monoculture. The C(4) grass had higher N-use efficiency than the C(3) grass due to its higher N productivity, irrespective of the N treatment or competition. CONCLUSIONS: The observations suggest that N-use strategies in the C(3) and C(4) species used in the study were closely related to seasonal dynamics of N supply and competition. N seasonality might be involved in the growth and temporal niche separation between C(3) and C(4) species observed in the natural ecosystems. 相似文献