首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4086篇
  免费   525篇
  国内免费   385篇
  4996篇
  2024年   20篇
  2023年   87篇
  2022年   73篇
  2021年   108篇
  2020年   197篇
  2019年   214篇
  2018年   202篇
  2017年   173篇
  2016年   169篇
  2015年   175篇
  2014年   194篇
  2013年   248篇
  2012年   180篇
  2011年   179篇
  2010年   151篇
  2009年   220篇
  2008年   212篇
  2007年   205篇
  2006年   203篇
  2005年   174篇
  2004年   146篇
  2003年   125篇
  2002年   122篇
  2001年   97篇
  2000年   100篇
  1999年   80篇
  1998年   83篇
  1997年   75篇
  1996年   60篇
  1995年   57篇
  1994年   40篇
  1993年   49篇
  1992年   53篇
  1991年   42篇
  1990年   40篇
  1989年   39篇
  1988年   31篇
  1987年   38篇
  1986年   42篇
  1985年   35篇
  1984年   55篇
  1983年   46篇
  1982年   47篇
  1981年   26篇
  1980年   28篇
  1979年   21篇
  1978年   7篇
  1977年   8篇
  1976年   5篇
  1973年   7篇
排序方式: 共有4996条查询结果,搜索用时 15 毫秒
51.
Tomkiewicz D  Nouwen N  Driessen AJ 《FEBS letters》2007,581(15):2820-2828
Protein translocation across the cellular membranes is an ubiquitous and crucial activity of cells. This process is mediated by translocases that consist of a protein conducting channel and an associated motor protein. Motor proteins interact with protein substrates and utilize the free energy of ATP binding and hydrolysis for protein unfolding, translocation and unbinding. Since motor proteins are found either at the cis- or trans-side of the membrane, different mechanisms for translocation have been proposed. In the Power stroke model, cis-acting motors are thought to push, while trans-motors pull on the substrate protein during translocation. In the Brownian ratchet model, translocation occurs by diffusion of the unfolded polypeptide through the translocation pore while directionality is achieved by trapping and refolding. Recent insights in the structure and function of the molecular motors suggest that different mechanisms can be employed simultaneously.  相似文献   
52.
Yuan Z  Liu W  Niu S  Wan S 《Annals of botany》2007,100(4):821-830
BACKGROUND AND AIMS: Numerous studies have examined the effects of climatic factors on the distribution of C(3) and C(4) grasses in various regions throughout the world, but the role of seasonal fluctuations in temperature, precipitation and soil N availability in regulating growth and competition of these two functional types is still not well understood. This report is about the effects of seasonality of soil N availability and competition on plant N dynamics and N-use strategies of one C(3) (Leymus chinensis) and one C(4) (Chloris virgata) grass species. METHODS: Leymus chinensis and C. virgata, two grass species native to the temperate steppe in northern China, were planted in a monoculture and a mixture under three different N seasonal availabilities: an average model (AM) with N evenly distributed over the growing season; a one-peak model (OM) with more N in summer than in spring and autumn; and a two-peak model (TM) with more N in spring and autumn than in summer. KEY RESULTS: The results showed that the altered N seasonality changed plant N concentration, with the highest value of L. chinensis under the OM treatment and C. virgata under the TM treatment, respectively. N seasonality also affected plant N content, N productivity and N-resorption efficiency and proficiency in both the C(3) and C(4) species. Interspecific competition influenced N-use and resorption efficiency in both the C(3) and C(4) species, with higher N-use and resorption efficiency in the mixture than in monoculture. The C(4) grass had higher N-use efficiency than the C(3) grass due to its higher N productivity, irrespective of the N treatment or competition. CONCLUSIONS: The observations suggest that N-use strategies in the C(3) and C(4) species used in the study were closely related to seasonal dynamics of N supply and competition. N seasonality might be involved in the growth and temporal niche separation between C(3) and C(4) species observed in the natural ecosystems.  相似文献   
53.
森林生态系统土壤CO2释放随海拔梯度的变化及其影响因子   总被引:2,自引:0,他引:2  
联合国气候框架公约的签署提升了人们对全球变暖、碳循环的关注。土壤CO2释放作为土壤-大气CO2交换的主要途径之一,成为了各国生态学家研究的重点内容。通过对1800~2155m海拔梯度上森林生态系统土壤CO2释放进行研究,揭示了较小空间尺度上土壤CO2释放的变化规律及其控制机制。在研究区域内,随着海拔梯度的增加,森林土壤CO2释放由(1.94±006) μmol m-2 s-1逐渐增加至(2.22±0.07) μ mol m-2 s-1。土壤温度、土壤水分、土壤有机碳(SOC)、全N、全P与土壤CO2释放呈显著正相关(n=14, P<0.05);土壤容重与土壤CO2释放速率呈显著负相关(n=14,P<0.05);土壤pH对土壤CO2释放影响不显著。作为一个复杂的生态学过程,环境因子及其交互作用对土壤CO2释放产生影响,为了减少因子共线性影响,逐步降低因子维数,采用主成分分析(PCA)揭示了土壤温度、土壤水分、SOC、全N、全P、容重6个因子的联合作用,其累积贡献率达到了57%以上;进一步运用逐步回归分析方法,探讨了影响土壤CO2释放沿海拔梯度分布的主导因子,结果表明土壤水分是研究区域森林生态系统土壤CO2释放沿海拔梯度变化的主导因子。  相似文献   
54.
The diel mixing patterns of two small floodplain lakes, Lago Jacaretinga in the Amazon drainage, and Lago Cristalino in the Rio Negro system, were investigated during both the high-water and low-water states of the Amazon River hydrograph. Measurements included temperature, oxygen, ammonia, phosphate, and chlorophyll. In both lakes thermal stratification developed during the day and was eroded at night. During the low-water period when the lakes were shallow, nocturnal circulation extended to the lake bottom, whereas when the lakes were deeper (greater than about 5 m), circulation did not reach the bottom and an anoxic hypolimnion developed. During the low-water period, percent of oxygen concentrations were relatively high but always less than saturation. Low oxygen concentrations were observed during the high-water period. At all times nocturnal mixing supplied a significant amount of oxygen to the lake ecosystems. Nighttime upward mixing of recycled nitrogen and phosphorus also appeared to be important nutrient sources for algal productivity.  相似文献   
55.
Spores of Nosema bombycis derived from diseased insects were highly purified by Urografin density gradient centrifugation. Antheraea eucalypti cells were inoculated with the purified spores primed with 0.1 n KOH solution to start a continuous propagation of N. bombycis in cell culture. The first increase in the number of infected A. eucalypti cells was observed at 48 hr postinoculation, and it was caused by the secondary infective forms of N. bombycis. The secondary infective forms were produced during the course of sporoblast differentiation. The parasites in cell cultures divided synchronously until 36 hr postinoculation. Mature spores were observed initially 6 days postinoculation at 27°C. The infected cultures were subcultured extensively for more than 1 year with the addition of healthy A. eucalypti cells.  相似文献   
56.
Aim The objective of this study was to describe and interpret the changes in faunal composition in the moth family Geometridae (Lepidoptera) along a small‐scale elevational gradient in a tropical montane rain forest. This gradient was compared with a large‐scale latitudinal gradient in Europe. Location Investigations were carried out in the province Zamora‐Chinchipe in southern Ecuador along a gradient ranging from 1040 to 2677 m above sea level at twenty‐two sites. Methods Moths were sampled with light‐traps in three field periods in 1999 and 2000 and subsequently sorted and determined to species or morphospecies. Results We analysed 13,938 specimens representing 1010 species of geometrid moths. The proportional contribution of subtaxa to the local geometrid fauna changes along the elevational gradient at all systematic levels considered. While proportions of species of the subfamilies Ennominae, Sterrhinae and Geometrinae significantly decrease, the proportion of Larentiinae increases with increasing altitude. Changes also occur within the subfamilies Ennominae and Larentiinae. The host–plant specialist ennomine tribes Cassymini, Macariini and Palyadini completely vanish, and the proportion of the tribe Boarmiini decreases at high altitudes. In contrast, the remaining tribes (mostly comprising polyphagous species) either do not show proportional changes (Azelinini, Nacophorini, Nephodiini, Ourapterygini) or even increase (Caberini, ‘Cratoptera group’). Within Larentiinae, the species proportion of the genus Eois decreases, whereas concomitantly the proportion of Eupithecia increases. There is a remarkable similarity between the altitudinal patterns in Ecuador and those found along the latitudinal gradient in Europe. Main conclusions Species of the subfamily Larentiinae seem to be particularly well‐adapted to harsh environmental conditions, towards both high altitudes and latitudes. They might disproportionately profit from lower predation at higher altitudes. Many changes in the faunal composition can be explained by expected host–plant requirements of the species involved. Our results show that diversity estimates based on taxon ratios which are assumed to be constant must be regarded with caution because such ratios can change rapidly along environmental gradients.  相似文献   
57.
The vertical distribution of phytoplankton in stratified water columns   总被引:2,自引:0,他引:2  
What determines the vertical distribution of phytoplankton in different aquatic environments remains an open question. To address this question, we develop a model to explore how phytoplankton respond through growth and movement to opposing resource gradients and different mixing conditions. We assume stratification creates a well-mixed surface layer on top of a poorly mixed deep layer and nutrients are supplied from multiple depth-dependent sources. Intraspecific competition leads to a unique strategic equilibrium for phytoplankton, which allows us to classify the distinct vertical distributions that can exist. Biomass can occur as a benthic layer (BL), a deep chlorophyll maximum (DCM), or in the mixed layer (ML), or as a combination of BL+ML or DCM+ML. The ML biomass can be limited by nutrients, light, or both. We predict how the vertical distribution, relative resource limitation, and biomass of phytoplankton will change across environmental gradients. We parameterized our model to represent potentially light and phosphorus limited freshwater lakes, but the model is applicable to a broad range of vertically stratified systems. Increasing nutrient input from the sediments or to the mixed layer increases light limitation, shifts phytoplankton towards the surface, and increases total biomass. Increasing background light attenuation increases light limitation, shifts the phytoplankton towards the surface, and generally decreases total biomass. Increasing mixed layer depth increases, decreases, or has no effect on light limitation and total biomass. Our model is able to replicate the diverse vertical distributions observed in nature and explain what underlying mechanisms drive these distributions.  相似文献   
58.
Evaluation of litterfall production is important for understanding nutrient cycling, forest growth, successional pathways, and interactions with environmental variables in forest ecosystems. Litterfall was intensively studied during the period of 1982–2001 in two subtropical monsoon vegetation gradients in the Dinghushan Biosphere Reserve, Guangdong Province, China. The two gradients include: (1) a successional gradient composed of pine forest (PF), mixed pine and broadleaved forest (MF) and monsoon evergreen broadleaved forest (BF), and (2) an altitudinal gradient composed of Baiyunci ravine rain forest (BRF), Qingyunci ravine rain forest (QRF), BF and mountainous evergreen broadleaved forest (MMF). Mean annual litterfall production was 356, 861 and 849 g m−2 for PF, MF and BF of the successional gradient, and 1016, 1061, 849 and 489 g m−2 for BRF, QRF, BF and MMF of the altitudinal gradient, respectively. As expected, mean annual litterfall of the pioneer forest PF was the lowest, but rapidly increased over the observation period while those in other forests were relatively stable, confirming that forest litterfall production is closely related to successional stages and growth patterns. Leaf proportions of total litterfall in PF, MF, BF, BRF, QRF and MMF were 76.4%, 68.4%, 56.8%, 55.7%, 57.6% and 69.2%, respectively, which were consistent with the results from studies in other evergreen broadleaved forests. Our analysis on litterfall monthly distributions indicated that litterfall production was much higher during the period of April to September compared to other months for all studied forest types. Although there were significant impacts of some climate variables (maximum and effective temperatures) on litterfall production in some of the studied forests, the mechanisms of how climate factors (temperature and rainfall) interactively affect litterfall await further study.  相似文献   
59.
探究竹子化学计量特征对生长阶段和海拔的响应对于了解其生理生态特征及生长适应策略至关重要。对武夷山沿海拔分布的五种典型竹子叶、枝、秆的碳(C)、氮(N)、磷(P)含量及化学计量内稳态指数(H)进行两个生长阶段的测定。结果显示不论生长阶段的变化,各器官N、P含量的变异系数均显著大于C含量,且秆的N、P含量变异系数要显著大于叶片和竹枝,但不同生长阶段并未改变秆的N∶P (12∶1)。毛竹4月份枝和8月份叶的N、P含量均随海拔增加而降低,而箬竹叶的N、P含量均随海拔增加而增加。海拔和生长阶段的交互作用显著提高了竹秆N含量对生长阶段变化的响应。竹叶N和秆的N、P含量在不同生长阶段具有明显的内稳性调控机制,但竹枝N、P的内稳性特征表现不明显。总而言之,这些结果一方面反映了武夷山五种竹子偏向于选择维持叶N含量的内稳态机制,另一方面调节秆N、P含量的协变来应对海拔和生长阶段变化中养分的利用策略。  相似文献   
60.
Local adaptation of plants along environmental gradients provides strong evidence for clinal evolution mediated by natural selection. Plants have developed diverse strategies to mitigate stress, for example, drought escape is a phenological strategy to avoid drought stress, while polyploidy was proposed as a genomic adaptation to stress. Polyploidy as an adaptation to aridity (an environmental parameter integrating temperature and precipitation) was previously documented in annual Brachypodium spp. (Poaceae) in the Western Mediterranean. Here, we examined whether polyploidy or phenology are associated with aridity in annual Brachypodium spp. along the aridity gradient in the Eastern Mediterranean. Using flow cytometry, we determined ploidy levels of plants from natural populations along the Israeli gradient, spanning ∼424 km from mesic Mediterranean to extreme desert climates. In a common garden we recorded time of seedling emergence, flowering and senescence. We tested whether the proportion of allotetraploids in the populations and phenological traits were associated with aridity. Contrary to a previous study in the Western Mediterranean, we found no effect of aridity on the proportion of allotetraploids and diploids within populations. Interestingly, phenology was associated with aridity: time of emergence was later, while flowering and senescence were earlier in desert plants. Our results indicate that in the Eastern Mediterranean, adaptation of Brachypodium to aridity is mediated mainly by phenology, rather than ploidy level. Therefore, we suggest that genome duplication is not the main driver of adaptation to environmental stress; rather, phenological change as a drought escape mechanism may be the major adaptation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号