首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9692篇
  免费   958篇
  国内免费   1507篇
  2024年   27篇
  2023年   150篇
  2022年   143篇
  2021年   243篇
  2020年   375篇
  2019年   381篇
  2018年   314篇
  2017年   374篇
  2016年   363篇
  2015年   431篇
  2014年   458篇
  2013年   707篇
  2012年   459篇
  2011年   405篇
  2010年   401篇
  2009年   490篇
  2008年   486篇
  2007年   524篇
  2006年   468篇
  2005年   402篇
  2004年   360篇
  2003年   313篇
  2002年   296篇
  2001年   293篇
  2000年   278篇
  1999年   230篇
  1998年   198篇
  1997年   206篇
  1996年   190篇
  1995年   183篇
  1994年   173篇
  1993年   192篇
  1992年   149篇
  1991年   133篇
  1990年   107篇
  1989年   134篇
  1988年   103篇
  1987年   99篇
  1986年   99篇
  1985年   130篇
  1984年   112篇
  1983年   94篇
  1982年   82篇
  1981年   80篇
  1980年   89篇
  1979年   58篇
  1978年   50篇
  1977年   39篇
  1976年   32篇
  1973年   16篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
992.
The static fluid mosaic model of biological membranes has been progressively complemented by a dynamic membrane model that includes phospholipid reordering in domains that are proposed to extend from nanometers to microns. Kinetic models for lipolytic enzymes have only been developed for homogeneous lipid phases. In this work, we develop a generalization of the well-known surface dilution kinetic theory to cases where, in a same lipid phase, both domain and nondomain phases coexist. Our model also allows understanding the changes in enzymatic activity due to a decrease of free substrate concentration when domains are induced by peptides. This lipid reordering and domain dynamics can affect the activity of lipolytic enzymes, and can provide a simple explanation for how basic peptides, with a strong direct interaction with acidic phospholipids (such as beta-amyloid peptide), may cause a complex modulation of the activities of many important enzymes in lipid signaling pathways.  相似文献   
993.
Hackl EV  Blagoi YP 《Biopolymers》2005,77(6):315-324
The work examines the structural transitions of DNA under the action of Cu2+ and Ca2+ ions in aqueous solution at temperatures of 29 and 45 degrees C by ir spectroscopy. Upon binding to the divalent ions studied, DNA transits into the compact state both at 29 and 45 degrees C. In the compact state DNA remains in B-form limits. The compaction process is of high positive cooperativity. As temperature increases the divalent metal ion concentration required to induce DNA compaction decreases in the case of Cu(2+)-induced compaction and increases in the case of Ca(2+)-induced compaction. It is suggested that the mechanism of the temperature effect on DNA compaction in the presence of Cu2+ ions possessing higher affinity for DNA bases differs from that of the temperature influence on Ca(2+)-induced DNA compaction. In the case of copper ions the determining factor is the increase of binding constants of the Cu2+ ions interacting with the denatured parts formed on DNA while in the case of calcium ions it is the decreased screening action of counterions upon the increase of their hydration with temperature. The efficiency of divalent metal ions studied in inducing DNA compaction depends on hydration of counterions. DNA compaction occurs in a narrow interval of Cu2+ concentrations. As the Cu2+ ion concentration increases, DNA compaction is replaced with Cu(2+)-induced DNA aggregation. At elevated temperatures Cu(2+)-induced DNA compaction could acquire a phase transition character.  相似文献   
994.
This study compares the effect of a rapid increase of the digester temperature (from 54 degrees C to 58 degrees C in 2 weeks) with a slow increase (from 53.9 degrees C to 57.2 degrees C at a rate of 0.55 degrees C per month) on full-scale thermophilic anaerobic digestion at Hyperion Treatment Plant. The short-term test demonstrated that rapidly increasing the digester temperature caused elevated production of volatile sulfur compounds, most notably methyl mercaptan, but volatile solids destruction and methane production were not significantly affected. The increase of the volatile fatty acid to alkalinity ratio from 0.1 to over 0.3 indicated a transient change in digester biochemistry, which was reversed by lowering the temperature. In the long term-test, a slow increase of digester temperature, the production of hydrogen sulfide increased above temperatures of 56.1 degrees C, but was controlled by increased injection of ferrous chloride. Methyl mercaptan was detected in trace amounts at the highest temperature tested (57.2 degrees C). This test showed insignificant effects on other digestion parameters, although some temperature-independent changes were observed that could have been seasonal effects over the year that the long-term test lasted. Thus a slow temperature increase was preferable. This observation contrasts with previous results showing the desirability of a rapid temperature rise to first establish a thermophilic culture when converting from mesophilic operation. Further research is warranted on temperature limits and process changes to optimize thermophilic anaerobic digestion.  相似文献   
995.
This article reports the kinetic determination of 6-methoxy-2-naphthylacetic acid (6-MNA), the major metabolite of nabumetone, from micelle-stabilized room temperature phosphorescence (MS-RTP) measurements made by using the stopped-flow mixing technique. This methodology allows one to determine analytes in complex matrices without the need for a tedious separation process. It also shortens analysis times substantially. The proposed method uses simplex methodology to optimize the chemical and instrumental variables affecting the phosphorescence. It was applied to the determination of 6-MNA in human urine. The maximum phosphorescence signal is obtained within only 10 s after the sample is prepared. The maximum slope of the kinetic curve, which corresponds to the maximum rate of the phosphorescence development, is measured at lambda(ex)=273 nm and lambda(em)=516 nm. Least-squares regression was used to fit experimental data, and the detection limit, repeatability, and standard deviation for replicate samples were determined.  相似文献   
996.
We investigated three probe design strategies used in quantitative polymerase chain reaction (PCR) for sensitivity in detection of the PCR amplicon. A plasmid with a 120-bp insert served as the DNA template. The probes were TaqMan, conventional molecular beacon (MB), and shared-stem molecular beacon (ATssMB and GCssMB). A shared-stem beacon probe combines the properties of a TaqMan probe and a conventional molecular beacon. It was found that the overall sensitivities for the four PCR probes are in the order of MB>ATssMB>GCssMB>TaqMan. The fluorescence quantum yield measurements indicate that incomplete or partial enzymatic cleavage catalyzed by Taq polymerase is the likely cause of the low sensitivities of two shared-stem beacons when compared with the conventional beacon probe. A high-fluorescence background associated with the current TaqMan probe sequence contributes to the relatively low detection sensitivity and signal-to-background ratio. The study points out that the nucleotide environment surrounding the reporting fluorophore can strongly affect the probe performance in real-time PCR.  相似文献   
997.
In non-irrigated agricultural fields in tropical zones, high temperature and water stress prevail during the main cropping season. Natural epizootics of Beauveria bassiana on lepidopteran pests occur during winter. Application of B. bassiana during hot months when pest populations are at their climax may prove an effective management strategy. Therefore, 29 isolates of B. bassiana were tested for their ability to germinate and grow in temperature and water availability conditions prevailing during the pest season in these fields. The effect of temperature cycles with 8 h duration of high temperature fluctuating with 16 h duration of lower temperature (similar to field conditions); low water availability; and a combination of these two stress conditions was studied. Germination and growth assays were done at fluctuating temperature cycles of 32, 35, 38, and 42+/-1 degrees C (8 h)/25+/-1 degrees C (16 h) and in media with water stress created by 10, 20, 30, and 40% polyethylene glycol (PEG 6000). Assays set at a continuous temperature of 25+/-1 degrees C with no PEG in the medium served as controls. Stress was assessed as percentage germination or as growth relative to control. Isolates showing 90% growth relative to the control at temperature cycles including high temperatures of 35 and 38+/-1 degrees C were identified. One isolate (ARSEF 2860) had a thermal threshold above 43 degrees C. At 25 degrees C, all but one isolate of B. bassiana showed >90% growth relative to the control in 10% PEG (-0.45 MPa). Some isolates were found with >90% growth relative to control in medium having 30% PEG with water availability (1.33 MPa), nearly equivalent to that in soils which induce permanent wilting point of plants. When isolates that showed >90% growth relative to the control at both stress conditions, were stressed simultaneously, a decrease in growth was observed. Growth was reduced by approximately 20% at 35+/-1 degrees C (8 h)/25+/-1 degrees C (16 h) and 10% PEG and was affected to a greater degree in combinations of harsher stress conditions. The isolate ARSEF 2860 with a thermal threshold of >43 degrees C showed approximately 80% relative growth at a combined stress of 38+/-1 degrees C (8 h)/25+/-1 degrees C (16 h) and 10% PEG. These findings will aid the selection of isolates for use in field trials in hot or dry agricultural climates.  相似文献   
998.
Both chlorophyll a and b and polypeptides of the photosynthetic apparatus are found in gymnosperm seedlings. germinated and grown in absolute darkness. The photosystem II (PSII) activity is, however, limited, probably due to an inactive oxygen evolving system. In the present study dark-grown seedlings of Scots pine ( Pinus sylvestris L.) were transferred to light and changes in antenna size and the activation process of PSII were investigated using fluorescence measurements and quantitative western blotting. It was found that the activation process is rapid, requires very little light and that strong light inhibits the process. It takes place without any changes in the primary reactions of PSII. Furthermore, all polypeptides except the major light-harvesting chlorophyll a/b -binding protein complex of PSII (LHCII) were present in dark-grown seedlings in amounts comparable to the light treated control. The dark-grown seedlings had the same LHCII polypeptide composition as light treated seedlings, and the LHCII present seemed to be fully connected to the reaction centre. The results indicate that activation of PSII in dark-grown conifer seedlings resembles the photoactivation process of angiosperms. This implies that the fundamental processes in the assembly of the photosystem II complex is the same in all plants, but that the regulation differs between different taxa.  相似文献   
999.
Scenedesmus armatus (Chod.) Chod, growth and morphology were monitored in medium 7 (oligotrophic) and Bristol's medium (eutrophic); cultures in both media were incubated at 10 and 22° C. Growth rate at 10° C was reduced, i.e. only one doubling in 7 days in medium 7 and 2.3 doublings in Bristol's, compared to 4.3 and 6 doublings at 22° C over the same period. Unicells as well as cells of colonies were larger at the cold temperature. The lengths of cells were not significantly different regardless of temperature or medium, but cell width was markedly increased at the lower temperature. Additionally, an arcuate, eight-celled, multispined ecomorph, which resembled several previously described taxa, was produced at 10° C. It becomes a component of a previously published ordered sequence of ecomorph development for this species. Based on data now accumulated in both the laboratory and the field, these temporal changes are interpreted to be a cyclomorphosis, driven by a coupling of nutrient availability and temperature. Within the addition of new cold temperature (spring) ecomorphs, the ordered sequence of ecomorphs for S. armatus is a succession from unicells to multispined eight-celled colonies to quadricaudate colonies, ending with acaudate four-celled ecomorphs.  相似文献   
1000.
The Chinese hamster ovary (CHO) cell line producing interferon-gamma (IFN-gamma) exhibits a 2-fold increase in specific productivity when grown at 32 degrees C compared to 37 degrees C. Low temperature also causes growth arrest, meaning that the cell density is significantly lower at 32 degrees C, nutrients are consumed at a slower rate and the batch culture can be run for a longer period of time prior to the onset of cell death. At the end of the batch, product concentration is doubled at the low temperature. However, the batch time is nearly doubled as well, and this causes volumetric productivity to only marginally improve by using low temperature. One approach to alleviate the problem of slow growth at low temperature is to utilize a biphasic process, wherein cells are cultured at 37 degrees C for a period of time in order to obtain reasonably high cell density and then the temperature is shifted to 32 degrees C to achieve high specific productivity. Using this approach, it is hypothesized that IFN-gamma volumetric productivity would be maximized. We developed and validated a model for predicting the optimal point in time at which to shift the culture temperature from 37 degrees C to 32 degrees C. It was found that by shifting the temperature after 3 days of growth, the IFN-gamma volumetric productivity is increased by 40% compared to growth and production at 32 degrees C and by 90% compared to 37 degrees C, without any decrease in total production relative to culturing at 32 degrees C alone. The modeling framework presented here is applicable for optimizing controlled proliferation processes in general.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号