首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   9篇
  国内免费   8篇
  109篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   2篇
  2013年   7篇
  2012年   1篇
  2011年   4篇
  2009年   1篇
  2008年   5篇
  2007年   6篇
  2006年   4篇
  2005年   8篇
  2004年   10篇
  2003年   7篇
  2002年   3篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   6篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有109条查询结果,搜索用时 0 毫秒
91.
We have determined the three-dimensional structure of the potassium channel inhibitor HsTX1, using nuclear magnetic resonance and molecular modeling. This protein belongs to the scorpion short toxin family, which essentially contains potassium channel blockers of 29 to 39 amino acids and three disulfide bridges. It is highly active on voltage-gated Kv1.3 potassium channels. Furthermore, it has the particularity to possess a fourth disulfide bridge. We show that HsTX1 has a fold similar to that of the three-disulfide-bridged toxins and conserves the hydrophobic core found in the scorpion short toxins. Thus, the fourth bridge has no influence on the global conformation of HsTX1. Most residues spatially analogous to those interacting with voltage-gated potassium channels in the three-disulfide-bridged toxins are conserved in HsTX1. Thus, we propose that Tyr21, Lys23, Met25, and Asn26 are involved in the biological activity of HsTX1. As an additional positively charged residue is always spatially close to the aromatic residue in toxins blocking the voltage-gated potassium channels, and as previous mutagenesis experiments have shown the critical role played by the C-terminus in HsTX1, we suggest that Arg33 is also important for the activity of the four disulfide-bridged toxin. Docking calculations confirm that, if Lys23 and Met25 interact with the GYGDMH motif of Kv1.3, Arg33 can contact Asp386 and, thus, play the role of the additional positively charged residue of the toxin functional site. This original configuration of the binding site of HsTX1 for Kv1.3, if confirmed experimentally, offers new structural possibilities for the construction of a molecule blocking the voltage-gated potassium channels.  相似文献   
92.
Use of Proteases to Improve the Insecticidal Activity of Baculoviruses   总被引:1,自引:0,他引:1  
Basement membranes that surround the tissues of lepidopterous larvae act as potential barriers to baculovirus movement and establishment of systemic infection. Hence, one potential approach to improving the insecticidal activity of baculoviruses is to perforate or eliminate the basement membranes of their hosts, thereby facilitating the process of infection. Toward this end, we constructed six recombinant clones of Autographa californica nucleopolyhedrovirus (AcMNPV) that express three proteases that digest basement membrane proteins: rat stromelysin-1, human gelatinase A, and flesh fly (Sarcophaga peregrina) cathepsin L. Expression of these proteases was directed from either the ie-1 promoter (in AcIE1TV3.STR1, AcIE1TV3.GEL, and AcIE1TV3.ScathL) or the p6.9 promoter (in AcMLF9.STR1, AcMLF9.GEL, and AcMLF9.ScathL). Recombinant proteases were detected in the culture medium of cells infected with recombinant viruses by either zymography or azocoll assay. AcMLF9.STR1 and AcMLF9.ScathL caused premature cuticular melanization of 5th instar Heliothis virescens. Melanization and fragmentation of internal tissues were observed in half of the larvae infected with AcMLF9.ScathL and not at all in larvae infected with AcMLF9.STR1 or wild-type AcMNPV. Lethal-concentration bioassays revealed no significant differences in virulence toward H. virescens among the protease-expressing recombinants and wild-type AcMNPV. However, in survival-time bioassays, AcMLF9.ScathL killed H. virescens approximately 30% faster than AcMLF9.LqhIT2, a virus expressing an insect-selective scorpion neurotoxin from the p6.9 promoter. Larvae infected with AcMLF9.ScathL consumed approximately 26-fold less lettuce than wild-type virus-infected larvae. These results highlight the potential of improving baculovirus efficacy through the expression of proteases.  相似文献   
93.
A variety of evolutionarily related defensin molecules is found in plants and animals. Plant gamma-thionins and scorpion neurotoxins, for instance, may be categorized in this functional group, although each class recognizes a distinct receptor binding site. Such molecules are also categorized into the superfamily of cysteine-rich proteins. Plant defensins were generally believed to be involved in antimicrobial or antifungal mechanisms and, unlike scorpion toxins, little is known about whether these molecules are also endowed with the function of insect resistance. We have previously reported the isolation of a cDNA encoding a small cysteine-rich protein designated VrD1 (VrCRP) from a bruchid-resistant mungbean, which is apparently the first discovered plant defensin exhibiting in vitro and in vivo both insecticidal and antifungal activities. Our previous data also successfully demonstrated that VrD1 is toxic to E. coli and able to completely arrest the growth of Sf-21 insect cells at low concentration. However, the molecular and structural basis of this unique insecticidal activity of VrD1 is not clear. Therefore, in the present study, we use structural approach and phylogenic analysis to investigate the evolutionary and functional relations for such unique insecticidal activity. From our results, it is suggested that VrD1, in addition to gamma-thionins and several amylase inhibitors, is highly homologous to scorpion toxins, especially the short toxins. Moreover, based on the observation from our homology structures, VrD1 may utilize a newly found cluster of basic residues to achieve its insecticidal function, whereas all the other plant gamma-thionins were known to use a previously identified basic cluster conserved for gamma-thionins. Considering the general feature of short scorpion toxins to act on insect cell membranes with K(+)- or Cl(-)-channels as molecular targets, our analysis of interaction and recognition modes provides reasonable correlations between this newly found basic cluster and the insecticidal activity of VrD1, which is also comprehended as a possible link for "homoplasy evolution" between plant and animal defensin molecules.  相似文献   
94.
Agitoxin 2 (AgTx2) is a 38-residue scorpion toxin, cross-linked by three disulfide bridges, which acts on voltage-gated K(+) (Kv) channels. Maurotoxin (MTX) is a 34-residue scorpion toxin with an uncommon four-disulfide bridge reticulation, acting on both Ca(2+)-activated and Kv channels. A 39-mer chimeric peptide, named AgTx2-MTX, was designed from the sequence of the two toxins and chemically synthesized. It encompasses residues 1-5 of AgTx2, followed by the complete sequence of MTX. As established by enzyme cleavage, the new AgTx2-MTX molecule displays half-cystine pairings of the type C1-C5, C2-C6, C3-C7, and C4-C8, which is different from that of MTX. The 3D structure of AgTx2-MTX solved by (1)H-NMR, revealed both alpha-helical and beta-sheet structures, consistent with a common alpha/beta scaffold of scorpion toxins. Pharmacological assays of AgTx2-MTX revealed that this new molecule is more potent than both original toxins in blocking rat Kv1.2 channel. Docking simulations, performed with the 3D structure of AgTx2-MTX, confirmed this result and demonstrated the participation of the N-terminal domain of AgTx2 in its increased affinity for Kv1.2 through additional molecular contacts. Altogether, the data indicated that replacement of the N-terminal domain of MTX by the one of AgTx2 in the AgTx2-MTX chimera results in a reorganization of the disulfide bridge arrangement and an increase of affinity to the Kv1.2 channel.  相似文献   
95.
Potassium channels are widespread in living cells and are involved in many diseases. The scorpion toxin alpha-KTx(12.1) interacts with various K(+) channels, suggesting its capacity to match diverse channel pores. It is recognized that tissue injuries may affect the pH at toxins site of action, thereby modulating both protein conformation and activity. To better understand its molecular mechanism of action, we studied alpha-KTx(12.1) using pH as a tool to explore its plasticity and NMR in combination with MD calculations to detect it. The toxin solution structure consists of an alpha-helix and a triple-stranded beta-sheet stabilized by four disulfide bridges. The NMR results show, in addition, that His28 possesses an unusually low pK(a) of 5.2. The best set of protein conformers is obtained at pH 4.5, while at pH 7.0, the reduced number of NOEs resulting from a faster hydrogen exchange does not allow to reach a good structural convergence. Nonetheless, MD calculations show that the toxin structure does not vary significantly in that pH range, while conformational changes and modifications of the surface charge distribution occur when His28 is fully protonated. Moreover, essential dynamics analysis reveals variations in the toxin's coherent motions. In conclusion, His28, with its low pK(a) value, provides alpha-KTx(12.1) with the ability to preserve its active conformation over a wide pH interval, thus expanding the range of cellular conditions where the toxin can fully exhibit its activity. Overall, the results further underline the role of histidine as a natural controller of proteins' functionality.  相似文献   
96.
Pi4 is a short toxin found at very low abundance in the venom of Pandinus imperator scorpions. It is a potent blocker of K(+) channels. Like the other members of the alpha-KTX6 subfamily to which it belongs, it is cross-linked by four disulfide bonds. The synthetic analog (sPi4) and the natural toxin (nPi4) have been obtained by solid-phase synthesis or from scorpion venom, respectively. Analysis of two-dimensional (1)H NMR spectra of nPi4 and sPi4 indicates that both peptides have the same structure. Moreover, electrophysiological recordings of the blocking of Shaker B K(+) channels by sPi4 (K(D) = 8.5 nM) indicate that sPi4 has the same blocking activity of nPi4 (K(D) = 8.0 nM), previously described. The disulfide bonds have been independently determined by NMR and structure calculations, and by Edman-degradation/mass-spectrometry identification of peptides obtained by proteolysis of nPi4. Both approaches indicate that the pairing of the half-cystines is (6)C-(27)C, (12)C-(32)C, (16)C-(34)C, and (22)C-(37)C. The structure of the toxin has been determined by using 705 constraints derived from NMR data on sPi4. The structure, which is well defined, shows the characteristic alpha/beta scaffold of scorpion toxins. It is compared to the structure of the other alpha-KTX6 subfamily members and, in particular, to the structure of maurotoxin, which shows a different pattern of disulfide bridges despite its high degree of sequence identity (76%) with Pi4. The structure of Pi4 and the high amounts of synthetic peptide available, will enable the detailed analysis of the interaction of Pi4 with K(+) channels.  相似文献   
97.
Zhu S  Huys I  Dyason K  Verdonck F  Tytgat J 《Proteins》2004,54(2):361-370
Scorpion alpha-K(+) channel toxins are a large family of polypeptides with a similar structure but diverse pharmacological activities. Despite many structural and functional data available at present, little progress has been made in understanding the toxin's molecular basis responsible for the functional diversification. In this paper, we report the first complete cDNA sequences of toxins belonging to subfamily 6 and identify five new members, called alpha-KTx 6.6-6.10. By analyzing the rates of mutations that occurred in the corresponding cDNAs, we suggest that accelerated evolution in toxin-coding regions may be associated with the functional diversification of this subfamily. To pinpoint sites probably involved in the functional diversity of alpha-KTx family, we analyzed this family of sequences using the evolutionary trace method. This analysis highlighted one channel-binding surface common for all the members. This surface is composed of one conserved lysine residue at position 29 assisted by other residues at positions 10, 26, 27, 32, 34, and 36. Of them, the positions 29, 32, and 34 have been reported to be the most major determinants of channel specificity. Interestingly, another contrary surface was also observed at a higher evolutionary time cut-off value, which may be involved in the binding of ERG (ether-a-go-go-related gene) channel-specific toxins. The good match between the trace residues and the functional epitopes of the toxins suggested that the evolutionary trace results reported here can be applied to predict channel-binding sites of the toxins. Because, the side-chain variation in the trace positions is strongly linked with the functional alteration and channel-binding surface transfer of alpha-KTx family, we conclude that our findings should also be important for the rational design of new toxins targeting a given potassium channel with high selectivity.  相似文献   
98.
BmK AS在大鼠脑和蟑螂神经索突触体上的药理结合特性   总被引:1,自引:0,他引:1  
用INDOGEN法对一个新型东亚钳蝎活性多肽BmK AS进行了^125I标记。分别在哺乳动物和昆虫标本上观察了标记物的药理结合特性,结果表明BmK AS大大鼠脑突触体标本上有单一非协同结合位点,其平衡解离常数Kd与最大结合容量Bmax分别为1.49nmol/L,1.39nmol/g。此外,BmK AS在蟑螂神经索突触体标本同样也只有单一非协同结合位点,其平均解离常数Kd与最大结合容量Bmax分别为  相似文献   
99.
The ICK (inhibitor cystine knot) defines a large superfamily of polypeptides with high structural stability and functional diversity. Here, we describe a new scorpion venom-derived K+ channel toxin (named λ-MeuKTx-1) with an ICK fold through gene cloning, chemical synthesis, nuclear magnetic resonance spectroscopy, Ca2+ release measurements and electrophysiological recordings. λ-MeuKTx-1 was found to adopt an ICK fold that contains a three-strand anti-parallel β-sheet and a 310-helix. Functionally, this peptide selectively inhibits the Drosophila Shaker K+ channel but is not capable of activating skeletal-type Ca2+ release channels/ryanodine receptors, which is remarkably different from the previously known scorpion venom ICK peptides. The removal of two C-terminal residues of λ-MeuKTx-1 led to the loss of the inhibitory activity on the channel, whereas the C-terminal amidation resulted in the emergence of activity on four mammalian K+ channels accompanied by the loss of activity on the Shaker channel. A combination of structural and pharmacological data allows the recognition of three putative functional sites involved in channel blockade of λ-MeuKTx-1. The presence of a functional dyad in λ-MeuKTx-1 supports functional convergence among scorpion venom peptides with different folds. Furthermore, similarities in precursor organization, exon–intron structure, 3D-fold and function suggest that scorpion venom ICK-type K+ channel inhibitors and Ca2+ release channel activators share a common ancestor and their divergence occurs after speciation between buthidae and non-buthids. The structural and functional characterizations of the first scorpion venom ICK toxin with K+ channel-blocking activity sheds light on functionally divergent and convergent evolution of this conserved scaffold of ancient origin.  相似文献   
100.
Envenoming following scorpion sting is a common emergency in many parts of the world. During scorpion envenoming, highly toxic small polypeptides of the venom diffuse rapidly within the victim causing serious medical problems. The exploration of toxin structure-function relationship would benefit from the generation of soluble recombinant scorpion toxins in Escherichia coli. We developed an in vitro wheat germ translation system for the expression of the highly toxic Aah (Androctonus australis hector)II protein that requires the proper formation of four disulphide bonds. Soluble, recombinant N-terminal GST (glutathione S-transferase)-tagged AahII toxin is obtained in this in vitro translation system. After proteolytic removal of the GST-tag, purified rAahII (recombinant AahII) toxin, which contains two extra amino acids at its N terminal relative to the native AahII, is highly toxic after i.c.v. (intracerebroventricular) injection in Swiss mice. An LD50 (median lethal dose)-value of 10 ng (or 1.33 pmol), close to that of the native toxin (LD50 of 3 ng) indicates that the wheat germ in vitro translation system produces properly folded and biological active rAahII. In addition, NbAahII10 (Androctonus australis hector nanobody 10), a camel single domain antibody fragment, raised against the native AahII toxin, recognizes its cognate conformational epitope on the recombinant toxin and neutralizes the toxicity of purified rAahII upon injection in mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号