首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   8篇
  国内免费   8篇
  109篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   2篇
  2013年   7篇
  2012年   1篇
  2011年   4篇
  2009年   1篇
  2008年   5篇
  2007年   6篇
  2006年   4篇
  2005年   8篇
  2004年   10篇
  2003年   7篇
  2002年   3篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   6篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
41.
The fold of small disulfide-rich proteins largely relies on two or more disulfide bridges that are main components of the hydrophobic core. Because of the small size of these proteins and their high cystine content, the cysteine connectivity has been difficult to ascertain in some cases, leading to uncertainties and debates in the literature. Here, we use molecular dynamics simulations and MM-PBSA free energy calculations to compare similar folds with different disulfide pairings in two disulfide-rich miniprotein families, namely the knottins and the short-chain scorpion toxins, for which the connectivity has been discussed. We first show that the MM-PBSA approach is able to discriminate the correct knotted topology of knottins from the laddered one. Interestingly, a comparison of the free energy components for kalata B1 and MCoTI-II suggests that cyclotides and squash inhibitors, although sharing the same scaffold, are stabilized through different interactions. Application to short-chain scorpion toxins suggests that the conventional cysteine pairing found in many homologous toxins is significantly more stable than the unconventional pairing reported for maurotoxin and for spinoxin. This would mean that native maurotoxin and spinoxin are not at the lowest free energy minimum and might result from kinetically rather than thermodynamically driven oxidative folding processes. For both knottins and toxins, the correct or conventional disulfide connectivities provide lower flexibilities and smaller deviations from the initial conformations. Overall, our work suggests that molecular dynamics simulations and the MM-PBSA approach to estimate free energies are useful tools to analyze and compare disulfide bridge connectivities in miniproteins.  相似文献   
42.
The crystal structure of an acidic neurotoxin, BmK M8, from Chinese scorpion Buthus martensii Karsch was determined at 0.25 nm resolution. The X-ray diffraction data of BmK M8 crystals at 0.25nm resolution were collected on a Siemens area detector. Using molecular replacement method with a basic scorpion toxin AaH II in a search model, the cross-rotation function, PC-refinement and translation function were calculated by X-PLOR program package. The correct orientation and position of BmK M8 molecule in crystal were determined in a resolution range of 1.5 - 0.35nm, The oystallographic refinement was further performed by stereo-chemical restrict least-square technique, followed by simulated annealing, slow-cooling protocols. The final crystallographic R-factor at 0.8-0.25 nm is 0.171. The standard deviations of bond length and bond angle from ideality are 0.001 7nm and 2.24° , respectively. The final model of BmK M8 structure is composed of a dense core of secondary structure elements by a stretch of α-  相似文献   
43.
The aridification from Middle Miocene onwards has transformed the Asian interior into an arid environment, and the Pleistocene glacial–interglacial oscillations exerted further ecological impact. Therefore, both aridification and glaciation would have considerably influenced the evolution of many mid‐latitude species in temperate Asia. Here, we tested this perspective by a phylogeographic study of the mesobuthid scorpions across temperate Asia using one mitochondrial and three nuclear genes. Concordant mitochondrial and nuclear gene trees were obtained, which are consistent with species tree inferred using a Bayesian approach. The age of the most recent common ancestor (MRCA) of all the studied scorpions was estimated to be 12.49 Ma (late Middle Miocene); Mesobuthus eupeus diverged from the clade composing Mesobuthus caucasicus and Mesobuthus martensii in early Late Miocene (10.21 Ma); M. martensii diverged from M. caucasicus at 5.53 Ma in Late Miocene. The estimated MRCA ages of M. martensii and the Chinese lineage of M. eupeus were 2.37 and 0.68 Ma, respectively. Central Asia was identified as the ancestral area for the lineage leading to M. martensii and M. caucasicus and the Chinese lineage of M. eupeus. The ancestral habitat of the genus Mesobuthus is likely to have been characterized by an arid environment; a shift towards more humid habitat occurred in the MRCA of M. martensii and a lineage of M. caucasicus, finally leading to the adaptation of M. martensii to humid environment. Our data strongly support the idea that the stepwise intensified aridifications from Mid‐Miocene onwards drove the diversification of mesobuthid scorpions, and suggest that M. martensii and M. eupeus observed today in China originated from an ancestral lineage distributed in Central Asia. Both the colonization and the ensuing evolution of these species in East Asia appear to have been further moulded by Quaternary glaciations.  相似文献   
44.
45.
An erythroagglutinin from the hemolymph of the scorpion, Heterometrus bengalensis, has been purified by gel filtration and ion-exchange chromatography. Its homogeneity has been demonstrated by polyacrylamide gel electrophoresis. The purified agglutinin appears to be a monomeric protein having a possible molecular weight between 146,000 and 148,000. It has no divalent cation requirement for erythroagglutination. The erythroagglutination is not inhibited by saccharides, glycoproteins and mucin. Identical erythroagglutination pattern is obtained with normal as well as neuraminidase treated erythrocytes.  相似文献   
46.
Scorpion alpha-like toxins are proteins that act on mammalian and insect voltage-gated Na+ channels. Therefore, these toxins constitute an excellent target for examining the foundations that underlie their target specificity. With this motive we dissected the role of six critical amino acids located in the five-residue reverse turn (RT) and C-tail (CT) of the scorpion alpha-like toxin BmK M1. These residues were individually substituted resulting in 11 mutants and were subjected to a bioassay on mice, an electrophysiological characterization on three cloned voltage-gated Na+ channels (Nav1.2, Nav1.5 and para), a CD analysis and X-ray crystallography. The results reveal two molecular sites, a couplet of residues (8-9) in the RT and a hydrophobic surface consisting of residues 57 and 59-61 in the CT, where the substitution with specific residues can redirect the alpha-like characteristics of BmK M1 to either total insect or much higher mammal specificity. Crystal structures reveal that the pharmacological ramification of these mutants is accompanied by the reshaping of the 3D structure surrounding position 8. Furthermore, our results also reveal that residues 57 and 59-61, located at the CT, enclose the critical residue 58 in order to form a hydrophobic "gasket". Mutants of BmK M1 that interrupt this hydrophobic surface significantly gain insect selectivity.  相似文献   
47.
The Na+ channels of Chinese Hamster lung fibroblasts have receptor sites for tetrodotoxin, batrachotoxin, veratridine, dihydrograyanotoxin, scorpion and sea anemone toxins. The binding properties of these toxic compounds were determined and shown to be very similar to those found in a variety of excitable cells. Electrophysiological experiments indicate that these Na+ channels cannot be electrically activated unless previously treated by veratridine.  相似文献   
48.
49.
During the mating season, male desert scorpions are often found wandering through dune environments, presumably in search of female conspecifics. For a male desert scorpion, finding a receptive female is a potentially difficult and hazardous task, suggesting that wandering by the male may actually be a form of guided mate searching. In this study we examined whether male giant hairy desert scorpions (Hadrurus arizonensis) were capable of trailing female conspecifics using a Y-maze choice test. In three separate experiments, a significant proportion of male scorpions preferred the arm of the maze that a reproductive female scorpion had walked down. Male scorpions did not prefer maze arms that male conspecifics had walked down, indicating that this response was sex specific. When the substrate was repeatedly exposed to a reproductive female, males took significantly longer to complete the Y-maze test, exhibited an increase in pausing behavior, and displayed precourtship behaviors and a novel lunging behavior resembling sex-specific mate seizing behavior. The results from this study suggest that male H. arizonensis can orient and respond to substrate-borne signals from female conspecifics that are likely chemical in origin.  相似文献   
50.
Zarrabi M  Naderi-Manesh H 《Proteins》2008,71(3):1441-1449
Kappa-Hefutoxin1 is a K(+) channel-blocking toxin from the scorpion Heterometrus fluvipes. It is a 22-residue protein that adapts a novel fold of two parallel helices linked by two disulfide bridges without beta-sheets. Recognition of interactions of kappa-Hefutoxin1 with the voltage-gated potassium channels, Kv1.1, Kv1.2, and Kv1.3, was studied by 3D-Dock software package. All structures of kappa-Hefutoxin1 were considered during the simulations, which indicated that even small changes in the structure of kappa-Hefutoxin1 considerably affected both the recognition and the binding between kappa-Hefutoxin1 and the Kv1 channels. kappa-Hefutoxin1 is located around the extracellular part of the Kv1 channels, making contacts with its helices. Lys 19, Tyr 5, Arg 6, Trp 9, or Arg 10 in the toxin and residues Asp 402, His 404, Thr 407,Gly 401, and Asp 386 in each subunit of the Kv potassium channel are the key residues for the toxin-channel recognition. Moreover, the simulation result demonstrates that the hydrophobic interactions are important in interaction of negatively charged toxins with potassium channels. The results of our docking/molecular dynamics simulations indicate that our 3D model structure of the kappa-Hefutoxin1-complex is both reasonable and acceptable and could be helpful for smarter drug design and the blocking agents of Kv1 channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号