首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13180篇
  免费   769篇
  国内免费   299篇
  2023年   145篇
  2022年   177篇
  2021年   310篇
  2020年   290篇
  2019年   369篇
  2018年   382篇
  2017年   238篇
  2016年   292篇
  2015年   304篇
  2014年   593篇
  2013年   763篇
  2012年   350篇
  2011年   524篇
  2010年   507篇
  2009年   634篇
  2008年   745篇
  2007年   682篇
  2006年   623篇
  2005年   544篇
  2004年   457篇
  2003年   433篇
  2002年   354篇
  2001年   239篇
  2000年   227篇
  1999年   227篇
  1998年   244篇
  1997年   196篇
  1996年   173篇
  1995年   170篇
  1994年   183篇
  1993年   156篇
  1992年   176篇
  1991年   118篇
  1990年   106篇
  1989年   110篇
  1988年   88篇
  1987年   95篇
  1986年   92篇
  1985年   118篇
  1984年   130篇
  1982年   119篇
  1981年   100篇
  1980年   117篇
  1979年   134篇
  1978年   152篇
  1977年   141篇
  1976年   193篇
  1974年   104篇
  1973年   256篇
  1972年   135篇
排序方式: 共有10000条查询结果,搜索用时 343 毫秒
991.
Demuro A  Parker I 《Cell calcium》2003,34(6):499-509
Functional studies of single membrane ion channels were made possible by the introduction of the patch-clamp technique, which allows single-channel currents to be measured with unprecedented resolution. Nevertheless, patch clamping has some limitations: including the need for physical access of the patch pipette, possible disruption of local cellular architecture, inability to monitor multiple channels, and lack of spatial information. Here, we demonstrate the use of confocal fluorescence microscopy as a non-invasive technique to optically monitor the gating of individual Ca2+ channels. Near-membrane fluorescence signals track the gating of N-type Ca2+ channels with a kinetic resolution of about 10ms, provide a simultaneous and independent readout from several channels, and allow their locations to be mapped with sub-micrometer spatial resolution. Optical single-channel recording should be applicable to diverse voltage- and ligand-gated Ca2+-permeable channels, and has the potential for high-throughput functional analysis of single channels.  相似文献   
992.
Telomeric guanine-rich sequence can adopt quadruplex structures that are important for their biological role in chromosomal stabilisation. G quartets are characterised by the cyclic hydrogen bonding of four guanine bases in a coplanar arrangement and their stability is ion-dependent. In this work we compare the stability of [d(TGGGT)]4 and [d(T*GGGT)]4 quadruplexes. The last one contains a modified thymine, where the hydroxyl group substitutes one hydrogen atom of the methyl group of the thymine in the [d(TGGGT)]4 sequence. We used a combination of spectroscopic, calorimetric and computational techniques to characterise the G-quadruplex formation. NMR and CD spectra of [d(T*GGGT)]4 were characteristic of parallel-stranded, tetramolecular quadruplex. CD and DSC melting experiments reveal that [d(T*GGGT)]4 is less stable that unmodified quadruplex. Molecular models suggest possible explanation for the observed behaviour.  相似文献   
993.
Assemblies of Photosystem II and light-harvesting proteins were purified from the liverwort Marchantia polymorpha and investigated by two- and three-dimensional transmission electron microscopy of negatively stained specimens. By single-particle analysis, it was determined that about 25% of the particles are rectangular or slightly S-shaped with dimensions of 285 A in length, 144 A in width, 84 A in height, while the membrane part is about 52 A thick. This structure reveals the same architecture as that of a Photosystem II-light-harvesting assembly from seed plants. An overlay of the projection structure of the liverwort's complex with a projection structure deduced from stained trimeric LHC II crystals from pea confirmed the locations of trimeric LHC II within the liverwort's complex. Remarkably tight associations of LHC II and other chlorophyll a/b binding proteins with the PS II core complex are observed. More than 50% of the Photosystem II particles from the liverwort carry one or two additional masses. These extra masses are found to consist of an additional LHC II trimer and probably a chlorophyll a/b binding protein. For the first time, a three-dimensional structure of such a large assembly is defined.  相似文献   
994.
995.
Shen S  Jing Y  Kuang T 《Proteomics》2003,3(4):527-535
In order to avoid the complex conditions of the intact plant for simple analysis of proteins in wound-response stress, we used the detached rice leaf sheath which is a very active part of the rice seedling. Proteins were extracted from rice leaf sheath at 0, 12, 24, 48 h after cutting and separated by two-dimensional (2-D) polyacrylamide gel electrophoresis. Changes in differentially displayed proteins were found in leaf sheaths after cutting in the 0-48 h time course. Ten proteins were up-regulated, while 19 proteins were down-regulated compared with those on the four 2-D gels. Among them, 14 proteins were analyzed by N-terminal, or internal amino acid sequence. The clear functions of nine proteins could be identified. Six proteins did not yield amino acid sequence information due to their blocked N-termini. Furthermore, 11 proteins were determined by matrix-assisted laser desorption/ionization-time of flight mass spectrometry, and identified protein database matching. It was shown that the down-regulated proteins were calreticulin (nos. 5, 6), histone H1 (no. 15) and hemoglobin (no. 17), putative peroxidase (no. 19); the up-regulated proteins were Bowman-Birk trypsin inhibitor (no. 23), putative receptor-like protein kinase (nos. 24, 25), calmodulin-related protein (no. 26), small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (no. 27), mannose-binding rice lectin (nos. 28, 29). Among all the above proteins, four (nos. 23, 24, 25, 26) have been confirmed to be wound-response proteins. The others cannot be excluded as also being related to wound-responses, such as the signal transduction-related proteins (nos. 5, 6), photosynthesis-related protein (no. 27), and stress-response proteins (nos. 19, 28, 29). This is the first time protein changes in response to wounding in rice leaf sheath have been shown.  相似文献   
996.
The concept of presenting antigens in a repetitive array to obtain high titers of specific antibodies is increasingly applied by using surface-engineered viruses or bacterial envelopes as novel vaccines. A case for this concept was made 25 years ago, when producing high-titer antisera against ordered arrays of gp23, the major capsid protein of bacteriophage T4 (Aebi et al., Proc. Natl. Acad. Sci. USA, 74 (1977) 5514-5518). In view of the current interest in this concept we thought it useful to employ this system to directly visualize the dependence of antibody affinity and specificity on antigen presentation. We compared antibodies raised against T4 polyheads, a tubular variant of the bacteriophage T4 capsid, which have gp23 hexamers arranged in a crystalline lattice (gp23(repetitive)), with those raised against the hexameric gp23 subunits (gp23(monomeric)). The labeling patterns of Fab-fragments prepared from these antibodies when bound to polyheads were determined by electron microscopy and image enhancement. Anti-gp23(repetitive) bound in a monospecific, stoichiometric fashion to the gp23 units constituting the polyhead surface. In contrast, anti-gp23(monomeric) decorated the polyhead surface randomly and with a 40-fold lower occupancy. These results concur with the difference in titers established by ELISA for the antisera against the repetitively displayed form of antigen (anti-gp23(repetitive)) and the randomly presented antigen (gp23(monomeric)), and they constitute a compelling visual documentation of the concept of repetitive antigen presentation to elicite a serotype-like immune response.  相似文献   
997.
Atomic force microscopy was used in ambient conditions to directly image dense and sparse monolayers of bovine fetal epiphyseal and mature nasal cartilage aggrecan macromolecules adsorbed on mica substrates. Distinct resolution of the non-glycosylated N-terminal region from the glycosaminoglycan (GAG) brush of individual aggrecan monomers was achieved, as well as nanometer-scale resolution of individual GAG chain conformation and spacing. Fetal aggrecan core protein trace length (398+/-57 nm) and end-to-end length (257+/-87 nm) were both larger than that of mature aggrecan (352+/-88 and 226+/-81 nm, respectively). Similarly, fetal aggrecan GAG chain trace length (41+/-7 nm) and end-to-end (32+/-8 nm) length were both larger than that of mature aggrecan GAG (32+/-5 and 26+/-7 nm, respectively). GAG-GAG spacing along the core protein was significantly smaller in fetal compared to mature aggrecan (3.2+/-0.8 and 4.4+/-1.2nm, respectively). Together, these differences between the two aggrecan types were likely responsible for the greater persistence length of the fetal aggrecan (110 nm) compared to mature aggrecan (82 nm) calculated using the worm-like chain model. Measured dimensions and polymer statistical analyses were used in conjunction with the results of Western analyses, chromatographic, and carbohydrate electrophoresis measurements to better understand the dependence of aggrecan structure and properties on its constituent GAG chains.  相似文献   
998.
The force curve mode of the atomic force microscope (AFM) was applied to extract intrinsic membrane proteins from the surface of live cells using AFM tips modified by amino reactive bifunctional covalent crosslinkers. The modified AFM tips were individually brought into brief contact with the living cell surface to form covalent bonds with cell surface molecules. The force curves recorded during the detachment process from the cell surface were often characterized by an extension of a few hundred nanometers followed mostly by a single step jump to the zero force level. Collection and analysis of the final rupture force revealed that the most frequent force values (of the force) were in the range of 0.4–0.6 nN. The observed rupture force most likely represented extraction events of intrinsic membrane proteins from the cell membrane because the rupture force of a covalent crosslinking system was expected to be significantly larger than 1.0 nN, and the separation force of noncovalent ligand-receptor pairs to be less than 0.2 nN, under similar experimental conditions. The transfer of cell surface proteins to the AFM tip was verified by recording characteristic force curves of protein stretching between the AFM tips used on the cell surface and a silicon surface modified with amino reactive bifunctional crosslinkers. This method will be a useful addition to bionanotechnological research for the application of AFM.  相似文献   
999.
A novel method for the covalent attachment of erythrocytes to glass microscope coverslips that can be used to image intact cells and the cytoplasmic side of the cell membrane with either solid or liquid mode atomic force microscopy (AFM) is described. The strong binding of cells to the glass surface is achieved by the interaction of cell membrane carbohydrates to lectin, which is bound to N-5-azido-2-nitrobenzoyloxysuccinimide (ANBNOS)-coated coverslips (1). The effectiveness of this method is compared with the other commonly used methods of immobilizing intact erythrocytes on glass coverslips for AFM observations. Experimental conditions of AFM imaging of biologic tissue are discussed, and typical topographies of the extracellular and the cytoplasmic surfaces of the plasma membrane in the dry state and in the liquid state are presented. Comparison of the spectrin network of cell age-separated erythrocytes has demonstrated significant loss in the network order in older erythrocytes. The changes are quantitatively described using the pixel height histogram and window size grain analysis.  相似文献   
1000.
The purpose of this study was to investigate the stabilizing action of polyols against various protein degradation mechanisms (eg, aggregation, deamidation, oxidation), using a model protein lysozyme. Differential scanning calorimeter (DSC) was used to measure the thermodynamic parameters, mid point transition temperature and calorimetric enthalpy, in order to evaluate conformational stability. Enzyme activity assay was used to corroborate the DSC results. Mannitol, sucrose, lactose, glycerol, and propylene glycol were used as polyols to stabilize lysozyme against aggregation, deamidation, and oxidation. Mannitol was found to stabilize lysozyme against aggregation, sucrose against deamidation both at neutral pH and at acidic pH, and lactose against oxidation. Stabilizers that provided greater conformational stability of lysozyme against various degradation mechanisms also protected specific enzyme activity to a greater extent. It was concluded that DSC and bioassay could be valuable tools for screening stabilizers in protein formulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号