首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9472篇
  免费   838篇
  国内免费   623篇
  2024年   16篇
  2023年   134篇
  2022年   199篇
  2021年   272篇
  2020年   278篇
  2019年   326篇
  2018年   419篇
  2017年   272篇
  2016年   288篇
  2015年   305篇
  2014年   649篇
  2013年   679篇
  2012年   418篇
  2011年   549篇
  2010年   586篇
  2009年   660篇
  2008年   676篇
  2007年   679篇
  2006年   633篇
  2005年   510篇
  2004年   420篇
  2003年   411篇
  2002年   341篇
  2001年   188篇
  2000年   181篇
  1999年   144篇
  1998年   155篇
  1997年   105篇
  1996年   61篇
  1995年   74篇
  1994年   65篇
  1993年   51篇
  1992年   33篇
  1991年   21篇
  1990年   17篇
  1989年   15篇
  1988年   10篇
  1987年   11篇
  1986年   11篇
  1985年   10篇
  1984年   12篇
  1983年   9篇
  1982年   14篇
  1981年   9篇
  1980年   4篇
  1979年   5篇
  1978年   3篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有10000条查询结果,搜索用时 192 毫秒
61.
62.
Interaction of a 70-amino acid zinc-binding polypeptide from the regulatory chain of aspartate transcarbamoylase (ATCase) with the catalytic (C) subunit leads to dramatic changes in enzyme activity and affinity for ligand binding at the active sites. The complex between the polypeptide (zinc domain) and wild-type C trimer exhibits hyperbolic kinetics in contrast to the sigmoidal kinetics observed with the intact holoenzyme. Moreover, the Scatchard plot for binding N-(phosphonacetyl)-L-aspartate (PALA) to the complex is linear with a Kd corresponding to that evaluated for the holoenzyme converted to the relaxed (R) state. Additional evidence that the binding of the zinc domain to the C trimer converts it to the R state was attained with a mutant form of ATCase in which Lys 164 in the catalytic chain is replaced by Glu. As shown previously (Newell, J.O. & Schachman, H.K., 1990, Biophys. Chem. 37, 183-196), this mutant holoenzyme, which exists in the R conformation even in the absence of active site ligands, has a 50-fold greater affinity for PALA than the free C subunit. Adding the zinc domain to the C trimer containing the Lys 164-->Glu substitution leads to a 50-fold enhancement in the affinity for the bisubstrate analog yielding a value of Kd equal to that for the holoenzyme. A different mutant ATCase containing the Gln 231 to Ile replacement was shown (Peterson, C.B., Burman, D.L., & Schachman, H.K., 1992, Biochemistry 31, 8508-8515) to be much less active as a holoenzyme than as the free C trimer. For this mutant holoenzyme, the addition of substrates does not cause its conversion to the R state. However, the addition of the zinc domain to the Gln 231-->Ile C trimer leads to a marked increase in enzyme activity, and PALA binding data indicate that the complex resembles the R state of the holoenzyme. This interaction leading to a more active conformation serves as a model of intergenic complementation in which peptide binding to a protein causes a conformational correction at a site remote from the interacting surfaces resulting in activation of the protein. This linkage was also demonstrated by difference spectroscopy using a chromophore covalently bound at the active site, which served as a spectral probe for a local conformational change. The binding of ligands at the active sites was shown also to lead to a strengthening of the interaction between the zinc domain and the C trimer.  相似文献   
63.
BackgroundA copper chaperone CCS is a multi-domain protein that supplies a copper ion to Cu/Zn-superoxide dismutase (SOD1). Among the domains of CCS, the N-terminal domain (CCSdI) belongs to a heavy metal-associated (HMA) domain, in which a Cys-x-x-Cys (CxxC) motif binds a heavy metal ion. It has hence been expected that the HMA domain in CCS has a role in the metal trafficking; however, the CxxC motif in the domain is dispensable for supplying a copper ion to SOD1, leaving an open question on roles of CCSdI in CCS.MethodsTo evaluate protein-protein interactions of CCS through CCSdI, yeast two-hybrid assay, a pull-down assay using recombinant proteins, and the analysis with fluorescence resonance energy transfer were performed.ResultsWe found that CCS specifically interacted with another copper chaperone HAH1, a HMA domain protein, through CCSdI. The interaction between CCSdI and HAH1 was not involved in the copper supply from CCS to SOD1 but was mediated by a zinc ion ligated with Cys residues of the CxxC motifs in CCSdI and HAH1.ConclusionWhile physiological significance of the interaction between copper chaperones awaits further investigation, we propose that CCSdI would have a role in the metal-mediated interaction with other proteins including heterologous copper chaperones.  相似文献   
64.
Bcr-Abl, a nonreceptor tyrosine kinase, is associated with leukemias, especially chronic myeloid leukemia (CML). Deletion of Abl's N-terminal region, to which myristoyl is linked, renders the Bcr-Abl fusion oncoprotein constitutively active. The substitution of Abl's N-terminal region by Bcr enables Bcr-Abl oligomerization. Oligomerization is critical: it promotes clustering on the membrane, which is essential for potent MAPK signaling and cell proliferation. Here we decipher the Bcr-Abl specific, step-by-step oligomerization process, identify a specific packing surface, determine exactly how the process is structured and identify its key elements. Bcr's coiled coil (CC) domain at the N-terminal controls Bcr-Abl oligomerization. Crystallography validated oligomerization via Bcr-Abl dimerization between two Bcr CC domains, with tetramerization via tight packing between two binary assemblies. However, the structural principles guiding Bcr CC domain oligomerization are unknown, hindering mechanistic understanding and drugs exploiting it. Using molecular dynamics (MD) simulations, we determine that the binary complex of the Bcr CC domain serves as a basic unit in the quaternary complex providing a specific surface for dimer–dimer packing and higher-order oligomerization. We discover that the small α1-helix is the key. In the binary assembly, the helix forms interchain aromatic dimeric packing, and in the quaternary assembly, it contributes to the specific dimer–dimer packing. Our mechanism is supported by the experimental literature. It offers the key elements controlling this process which can expand the drug discovery strategy, including by Bcr CC-derived peptides, and candidate residues for small covalent drugs, toward quenching oligomerization, supplementing competitive and allosteric tyrosine kinase inhibitors.  相似文献   
65.
An analysis of the tendency of hydrophobic groups to tight packing on the surface of β-sheets based on well-known parameters of β-sheets and hydrophobic groups was conducted. This analysis shows the existence of very limited numbers and clearly outlined architecture families of regular parts for the majority of β-structure-containing domains. Each family of architecture strongly depends on the number of β-strands in the pure β-domains and on the existence and number of additional α-helixes and on the mutual arrangements β-strands and α-helixes along the chain in mixed α/β-domains. This paper demonstrates that the tendency of hydrophobic groups to the local tight packing on the surface of β-sheets is probably the main reason for the twist of β-sheets. © 1993 Wiley-Liss, Inc.  相似文献   
66.
67.
为研究鲸类低氧适应的分子机制,文章克隆了不同低氧耐受能力的3个鲸类物种,抹香鲸(Physeter macrocephalus)、白鲸(Delphinapterus leucas)和长江江豚(Neophocaena phocaenoids asiaeorientalis)的脯氨酸羟化酶2(PHD2)。通过对其序列进行分析,发现3个物种PHD2的氨基酸序列非常保守。通过对这3个物种的PHD2的功能进行探究发现:3个物种的PHD2在常氧情况下均可以降解3个物种的HIF-α(包括HIF-1α和HIF-2α)蛋白,而在低氧(O2浓度小于2%)情况下,PHD2则无法明显降解HIF-α蛋白。在常氧下,鲸类的PHD2降解HIF-α是依赖于识别鲸类的HIF-1α上LTLLAP和LEMLAP,HIF-2α的LAQLAP和LETLAP氨基酸片段,推测PHD2是通过对HIF-α序列中的脯氨酸位点进行羟基化修饰后,被VHL-E3泛素连接酶复合体所识别,发生泛素化降解。而在低氧条件下,PHD2的活性受到抑制HIF-α不能被VHL-E3泛素连接酶复合体识别,发生降解。研究对3种不同低氧耐受能力...  相似文献   
68.
The chemical composition of cell walls (thecae) of three taxa of scaly green flagellates (Prasinophyceae) was investigated. The theca of Tetraselmis striata, Tetraselmis tetrathele, and Scherffelia dubia consists mainly of carbohydrate (80% of dry weight), with proteins (5%), calcium (4%), and sulfate (6%) as minor components. The principal sugars (60% of dry weight) are the 2-keto-sugar acids 3-deoxy-manno-2-octulosonic acid (KDO), 3-deoxy-manno-5-O-methyl-2-octulosonic acid (5OMeKDO), and 3-deoxy-lyxo-2-heptulosaric acid (DHA). Arabinose, gulose, galactose, galacturonic acid, and in S. dubia, xylose and rhamnose were also found. Examination of scale preparations from Mantoniella squamata, Mesostigma viride, Pyramimonas amylifera, and Nephroselmis olivacea revealed that the 2-keto-sugar acids were always associated with the presence of typical prasinophycean scales on the cell surface. In contrast, 2-keto-sugar acids were not detected in the cell wall of Chlamydomonas reinhardtii nor in polymer preparations from the culture medium of Chlamydomonas reinhardtii, Dunaliella bioculata, Dunaliella primolecta, Asteromonas gracilis, Hafniomonas reticulate, Pedinomonas tuberculata, Monomastix sp., and Micromonas pusilla. We conclude that 2-keto-sugar acids are chemical markers for prasinophycean scales.  相似文献   
69.
Mallomonas splendens (G. S. West) Playfair has a cell covering of siliceous scales and bristles. Interphase cells bear four anterior and four posterior bristles that each articulate, at their flexed basal ends via a complex of labile fibers (the fibrillar complex), on a specialized body scale (a base-plate scale). Body scales, base-plate scales and bristles are formed independently of each other and at different times in silica deposition vesicles (SDVs) that are associated with one of the two chloroplasts. The fine structure of scale and bristle morphogenesis in M. splendens agrees with that previously described for Synura and Mallomonas. Four new posterior bristles are formed at late interphase with their basal ends towards the cell posterior. The fibrillar complex is formed in situ on the bristle in the SDV. Mature bristles are secreted one by one onto the surface of the protoplast, beneath the layer of body scales, where the basal ends of the bristles adhere to the plasma membrane via the fibrillar complex. The extrusion of posterior bristles and their deployment onto the cell surface was monitored with video. A fine cellular protuberance accompanies the bristles as they are extruded from beneath the scale layer with their basal ends leading. When distant from the cell, the basal ends of the bristles appear attached to the protuberance, possibly by way of their fibrillar complexes. Once bristles are fully extruded, and their tips free in the surrounding environment, the bristle bases are drawn back to the posterior apex of the cell, apparently by the now shortening protuberance. Thus a 180° reorientation of the posterior bristles has been effected outside the cell. Thin-sections of cells that are extruding bristles show a threadlike, cytoplasmic extension of the cell posterior which may be analogous to the protuberance seen in live cells. Four new posterior base-plate scales are secreted after the bristles have reoriented. Scanning electron microscopy indicates that the fibrillar complex is involved in positioning the bristles onto their respective base-plate scales. Anterior bristles are formed in new daughter cells in the same orientation as the posterior bristles; thus they are extruded tip first and no reorientation is required.  相似文献   
70.
Two types of serine proteases and a serine protease homologue cDNAs were isolated from Hyphantria cunea larvae induced immune response due to an injection of a microorganism through RT‐PCR and cDNA library screening, and their characteristics were examined. The isolated cDNAs are composed 2.1 kb, 2.2 kb, and 2.5 kb nucleotide each, which encoded 388, 390, 580 amino acid residues, and were designated as HcPE‐1, HcPE‐2 and HcPE‐3, respectively. They were revealed as serine proteases or a serine protease homologue with the clip domain through a database search. The deduced amino acid sequence comparison showed high homology of 72‐78% among them. Six Cys residues of the N‐terminal clip domain forming the disulfide bond, Cys residues of the catalytic domain, and Cys residues forming inter‐bridge between clip domain and catalytic domain were also well preserved. Three amino acid residues, His, Asp, and Ser, within the active site were perfectly conserved in HcPE‐2 and HcPE‐3, however, His was replaced with Gln178 in HcPE‐1. The Arg residues (HcPE‐1, Arg132; HcPE‐2, Arg134; HcPE‐3, Arg325) known as the activation sites by proteolytic cleavage were preserved well in all three types of protein. In case of HcPE‐3, three continuous clip‐like domains existed in the N terminal. As the result of phylogenetic analysis, three clip domain family of protein from H. cunea make groups with arthropod proclotting enzyme precursor. Northern blot analysis showed all three genes were induced through an injection of Escherichia coli, but expression patterns were varied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号