首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   444篇
  免费   72篇
  国内免费   31篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   19篇
  2020年   18篇
  2019年   21篇
  2018年   23篇
  2017年   22篇
  2016年   17篇
  2015年   29篇
  2014年   20篇
  2013年   35篇
  2012年   21篇
  2011年   25篇
  2010年   25篇
  2009年   22篇
  2008年   27篇
  2007年   24篇
  2006年   16篇
  2005年   24篇
  2004年   24篇
  2003年   11篇
  2002年   15篇
  2001年   7篇
  2000年   13篇
  1999年   13篇
  1998年   10篇
  1997年   10篇
  1996年   4篇
  1995年   7篇
  1994年   3篇
  1993年   7篇
  1992年   4篇
  1991年   1篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1978年   3篇
  1973年   1篇
排序方式: 共有547条查询结果,搜索用时 15 毫秒
21.
22.
Populations of large wild mammals are declining worldwide, while the abundance of livestock is increasing. The absence of large mammals frequently leads to increases in the abundance of small mammals such as rodents, but little is known about how the loss of large mammals affects the behaviour of small mammals. To investigate this question, we analysed long‐term data collected at the Kenya Long‐term Exclosure Experiment, which excludes different combinations of large mammals from a savannah ecosystem in central Kenya. We investigated the effects of excluding large mammals, both wild and domestic, on the movements of the pouched mouse (Saccostomus mearnsi), the most common species of small mammal in this habitat. Mice moved ~20% more in the presence of wildlife, but their movements were not significantly affected by the presence of cattle. An index of intraspecific contacts between mice was higher at higher mouse densities, and these high densities were more likely when wildlife and cattle were absent. The results suggest that the absence of large mammals led to higher densities of small mammals, which resulted in a greater probability of intraspecific contacts, despite lower average movement distances.  相似文献   
23.
Aim We used a landscape‐scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and in the community composition of five soil organism groups. Our aim was to determine whether the degree to which soil organisms respond to natural changes and/or induced changes (e.g. changes in land‐use type and climate) in habitat is consistent across trophic and taxonomic groups in the context of conservation policies for birch woodland and heather moorland. Location Mainland Scotland. Methods We sampled mesostigmatid mites, oribatid mites, fungi, bacteria and archaea in adjacent patches of birch woodland (dominated by Betula pubescens) and heather moorland (dominated by Calluna vulgaris) at 12 sites for which annual rainfall ranged between 713 and 2251 mm. Differences in community composition were visualized using non‐metric multidimensional scaling based on Bray–Curtis dissimilarities. The factors contributing to differences between habitats within sites were explored using general linear models and those among sites using redundancy analysis. Results The communities of all groups differed between habitats within sites, but only the oribatid mites and fungi differed consistently between habitats across sites. Within sites, dissimilarity in fungal communities was positively related to the difference in C. vulgaris cover between habitats, whereas dissimilarities in bacteria and archaea were positively related to differences in soil pH and C:N ratio between habitats, respectively. Main conclusions The influence of vegetation type and soil properties differed between groups of soil organisms, albeit in a predictable manner, across the 12 sites. Organisms directly associated with plants (fungi), and organisms with microhabitat and resource preferences (Oribatida) were strongly responsive to changes in habitat type. The response of organisms not directly associated with plants (bacteria, archaea) depended on differences in soil properties, while organisms with less clear microhabitat and resource preferences (Mesostigmata) were not strongly responsive to either vegetation type or soil properties. These results show that it is possible to predict the impact of habitat change on specific soil organisms depending on their ecology. Moreover, the community composition of all groups was related to variation in precipitation within the study area, which shows that external factors, such as those caused by climate change, can have a direct effect on belowground communities.  相似文献   
24.
25.
Woodland birds have experienced widespread population declines across Europe, resulting partly from a decrease in management practices such as coppicing. Increasing fuelwood demand may reverse the decline of coppicing, making it timely to attempt a fuller understanding of its effects. Here, the impact of coppicing on year‐round habitat use by adults and juveniles of 16 songbird species was quantified from a quasi‐experimental study over 32 years (1978–2009) in Treswell Wood, Nottinghamshire, UK. Habitat use was inferred using capture rates from more than 10 000 h of mist‐netting (> 25 000 captures) and detailed information on coppicing. Capture rates varied with coppice age in different ways: (1) increases as coppice aged (e.g. Marsh Tit Poecile palustris, juvenile Eurasian Treecreepers Certhia familiaris); (2) declines as coppice aged (e.g. Eurasian Blue Tit Cyanistes caeruleus, Great Tit Parus major); (3) peaks in capture rates at intermediate coppice age (i.e. 5–15 years) (e.g. Garden Warbler Sylvia borin, Willow Warbler Phylloscopus trochilus, adult Treecreepers); and (4) a peak at intermediate ages, followed by a decline, before an increase in use again at the oldest coppice ages (i.e. > 20 years) (e.g. Common Blackbird Turdus merula, Eurasian Blackcap Sylvia atricapilla, Eurasian Bullfinch Pyrrhula pyrrhula). Responses to coppice age were similar in different seasons, although Willow Tits Poecile montana showed little preference during breeding but avoided older coppice at other times. Juveniles and adults often differed in their responses to coppice age. The analyses reveal patterns in habitat use that are relevant to woodland management and conservation policy. They suggest that a mosaic of age structures in woodland is beneficial to a wide range of woodland species, and that management should consider the requirements of all age‐classes of birds at different times of year.  相似文献   
26.
The objective of this study was to investigate the influence of mopane canopy cover on litter decomposition in a semi‐arid African savannah. We used a randomized block design with five blocks of 100 × 100 m demarcated in a 10‐ha pocket of open mopane woodland. Litterbags were placed beneath large (8.3 m crown diameter) and small mopane trees (2.7 m crown diameter) and in the intercanopy area. Decomposition was fastest in the intercanopy area exposed to solar radiation (k = 0.35 year?1), intermediate beneath small trees (k = 0.28 year?1) and slowest beneath large trees (k = 0.23 year?1). Soil temperatures beneath small and large trees were 3–5 and 6–9°C lower than in the intercanopy area, respectively. Bacterial and fungal counts were significantly higher (P < 0.05) beneath large than small trees and in the intercanopy area. The amount of N and P released did not vary significantly among sampling sites. Soil moisture in the dry season was similar among sampling sites but rainy‐season soil moisture was significantly greater (P < 0.05) beneath large than small trees and in the intecanopy area. Mopane canopy cover retarded litter decomposition suggesting that photodegradation could be an important factor controlling carbon turnover in semi‐arid African savannahs.  相似文献   
27.
Aim The spruce–moss forest is the main forest ecosystem of the North American boreal forest. We used stand structure and fire data to examine the long‐term development and growth of the spruce–moss ecosystem. We evaluate the stability of the forest with time and the conditions needed for the continuing regeneration, growth and re‐establishment of black spruce (Picea mariana) trees. Location The study area occurs in Québec, Canada, and extends from 70°00′ to 72°00′ W and 47°30′ to 56°00′ N. Methods A spatial inventory of spruce–moss forest stands was performed along 34 transects. Nineteen spruce–moss forests were selected. A 500 m2 quadrat at each site was used for radiocarbon and tree‐ring dating of time since last fire (TSLF). Size structure and tree regeneration in each stand were described based on diameter distribution of the dominant and co‐dominant tree species [black spruce and balsam fir (Abies balsamea)]. Results The TSLF of the studied forests ranges from 118 to 4870 cal. yr bp . Forests < 325 cal. yr bp are dominated by trees of the first post‐fire cohort and are not yet at equilibrium, whereas older forests show a reverse‐J diameter distribution typical of mature, old‐growth stands. The younger forests display faster height and radial growth‐rate patterns than the older forests, due to factors associated with long‐term forest development. Each of the stands examined established after severe fires that consumed all the soil organic material. Main conclusions Spruce–moss forests are able to self‐regenerate after fires that consume the organic layer, thus allowing seed regeneration at the soil surface. In the absence of fire the forests can remain in an equilibrium state. Once the forests mature, tree productivity eventually levels off and becomes stable. Further proof of the enduring stability of these forests, in between fire periods, lies in the ages of the stands. Stands with a TSLF of 325–4870 cal. yr bp all exhibited the same stand structure, tree growth rates and species characteristics. In the absence of fire, the spruce–moss forests are able to maintain themselves for thousands of years with no apparent degradation or change in forest type.  相似文献   
28.
The knowledge of ecological requirements of declining butterflies of European woodlands remains limited, which hinders conservation management of their localities. This also applies for continentally threatened scarce fritillary Euphydryas maturna . On the basis of the largest data set on its habitat use ever collected in Central Europe, we analyse habitat requirements of its populations in Austria (A), the Czech Republic (Cz) and Germany (D). All studied populations inhabit open-canopy sites within woodlands, but larval survival decreases under full sun and preferred sites are relatively humid and sheltered. Nests of pre-hibernation larvae occur at terminal branches of Fraxinus excelsior , 1.5–3 m above the ground. Pre-hibernation mortality reaches 70% (Cz, D). Another limiting factor is quality of woodland vegetation: post-hibernation larvae consume a wide range of herbs and shrubs, and adult distribution is linked to nectar availability. The butterfly thus depends on highly heterogeneous early successional stages of deciduous woods, historically maintained by coppicing (Cz, D) and forest pasture (A). Restoration of these traditional methods offers the only chance for survival of E. maturna in Central Europe, and the butterfly may become a flagship for other threatened organisms of open-canopy woodlands.  相似文献   
29.
Abstract: The decline of woodland caribou (Rangifer tarandus caribou) has been attributed to anthropogenic landscape disturbances, but critical distance thresholds and time lags between disturbance and extirpation are unknown. Using a database of caribou presence and extirpation for northern Ontario, Canada, geo-coded to 10 times 10-km cells, we constructed logistic regression models to predict caribou extirpation based on distance to the nearest of each of 9 disturbance types: forest cutovers, fires, roads, utility corridors, mines, pits and quarries, lakes, trails, and rail lines. We used Akaike's Information Criterion to select parsimonious models and Receiver-Operating Characteristic curves to derive optimal thresholds. To deal with the effects of spatial autocorrelation on estimates of model significance, we used subsampling and restricted randomizations. Forest cutovers were the best predictor of caribou occupancy, with a tolerance threshold of 13 km to nearest cutover and a time lag of 2 decades between disturbance by cutting and caribou extirpation. Management of woodland caribou should incorporate buffers around habitat and requires long-term monitoring of range occupancy.  相似文献   
30.
Populations of naturally growing woody species valued for their contribution to human livelihoods are threatened with extinction. Most at risk are those existing in human inhabited areas outside protected areas that are subjected to high population pressure and to a variety of land use demands. The sustainable utilization of these plants requires as a first step knowledge, including, their ecology and an understanding of the peoples attitudes to conservation. This study was conducted to generate data that would contribute to the management for conservation and sustainable use of woody resources. The study objectives were to document local knowledge covering the uses, status, threats, habitats and management solutions of woody species; determine the abundances, distribution and population structure of 16 woody species, and assess the conservation status of the selected woody species. The study was carried out in Gadumire Sub-county, Uganda using both an ethnobotanical approach and quantitative ecological methods. The species are multipurpose and are exploited to satisfy different subsistence needs. They had population densities ranging between 3.6 and 2630 individuals ha−1, and distributions ranging between 0.3 and 39.5%. The species Acacia hockii, Albizia zygia, Acacia seyal, Markhamia lutea and Albizia coriaria had a good conservation status. The remainder of the species appear threatened either because they had low densities, frequencies or less steep size class distribution (SCD) slopes. Securidaca longipedunculata Fres. was not encountered at all in the study plots. Community perceptions collaborated the measured population dynamics. The major threats believed to be impacting the species by the community are the growing human population, expanding crop agriculture, poor harvesting methods and over-exploitation of the species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号