首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11025篇
  免费   1117篇
  国内免费   2351篇
  14493篇
  2024年   51篇
  2023年   176篇
  2022年   221篇
  2021年   302篇
  2020年   422篇
  2019年   481篇
  2018年   475篇
  2017年   457篇
  2016年   486篇
  2015年   443篇
  2014年   503篇
  2013年   766篇
  2012年   443篇
  2011年   516篇
  2010年   403篇
  2009年   623篇
  2008年   550篇
  2007年   578篇
  2006年   569篇
  2005年   546篇
  2004年   496篇
  2003年   444篇
  2002年   420篇
  2001年   361篇
  2000年   313篇
  1999年   303篇
  1998年   266篇
  1997年   269篇
  1996年   267篇
  1995年   233篇
  1994年   205篇
  1993年   201篇
  1992年   221篇
  1991年   149篇
  1990年   173篇
  1989年   155篇
  1988年   134篇
  1987年   128篇
  1986年   100篇
  1985年   131篇
  1984年   99篇
  1983年   61篇
  1982年   117篇
  1981年   76篇
  1980年   54篇
  1979年   36篇
  1978年   22篇
  1977年   12篇
  1976年   9篇
  1975年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Summary The effect of soil water status on the critical phosphorus concentration (CPC) determined in apices and whole tops ofStylosanthes hamata cv. Verano was investigated in a glasshouse trial. The species was grown with six rates of P and three ranges of soil water potential and was harvested at 10 and 14 weeks after germination. The CPC of both whole tops and apices decliced between the two harvests. At the first harvest the CPC of both whole tops and apices increased as the soil water potential decreased but at the second harvest there was no effect of soil water potential on CPC. It is suggested that at the earlier harvest water stress was delaying physiological development, resulting in a CPC characteristic of chronologically younger tissue, but that by the second harvest the decline in CPC with age had ceased for all water treatments.  相似文献   
32.
Validation of the ageing of deep-water fish is difficult and there are only a few instances where the rings on the otoliths have been shown to be laid down annually. Roundnose grenadier have been fished commercially in the North Atlantic since the 1960s and the adult fish have frequently been aged by counting the rings in otoliths or scales. All the ageing was done on the assumption that the rings in the otoliths or scales were annual. Between 1975 and 1992, the Scottish Association for Marine Science carried out seasonal trawling surveys in the Rockall Trough using a fine-meshed trawl, and collected otoliths from a wide size range of roundnose grenadier. An examination of the growing edge of otoliths from juvenile fish from these collections suggests that the rings in the otoliths are laid down annually. The broader, opaque zones which represent the growth phase were dominant between September and March. The thinner, hyaline zones were dominant between April and July. The apparent delay in the growth phase compared with most shallow-water species is discussed in relation to the availability of mesopelagic prey.  相似文献   
33.
Experiments were conducted on 1-year-old Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] and 2- to 3-month-old alder [Alnus rubra (Bong)] seedlings growing in drying soils to determine the relative influence of root and leaf water status on stomatal conductance (gc). The water status of shoots was manipulated independently of that of the roots using a pressure chamber that enclosed the root system. Pressurizing the chamber increases the turgor of cells in the shoot but not in the roots. Seedling shoots were enclosed in a whole-plant cuvette and transpiration and net photosynthesis rates measured continuously. In both species, stomatal closure in response to soil drying was progressively reversed with increasing pressurization. Responses occurred within minutes of pressurization and measurements almost immediately returned to pre-pressurization levels when the pressure was released. Even in wet soils there was a significant increase in gc with pressurization. In Douglas fir, the stomatal response to pressurization was the same for seedlings grown in dry soils for up to 120 d as for those subjected to drought stress over 40 to 60 d. The stomatal conductance of both Douglas fir and alder seedlings was less sensitive to root chamber pressure at higher vapour pressure deficits (D), and stomatal closure in response to increasing D from 1.04 to 2.06 kPa was only partially reversed by pressurization. Our results are in contrast to those of other studies on herbaceous species, even though we followed the same experimental approach. They suggest that it is not always appropriate to invoke a ‘feedforward’ model of short-term stomatal response to soil drying, whereby chemical messengers from the roots bring about stomatal closure.  相似文献   
34.
The Jornada del Muerto basin of the Chihuahuan Desert of southern New Mexico, USA, has undergone a marked transition of plant communities. Shrubs such as mesquite (Prosopis glandulosa) have greatly increased or now dominate in areas that were previously dominated by perennial grasses. The replacement of grasses by shrubs requires an establishment phase where small shrubs must compete directly with similar-sized grass plants. This is followed by a phase in which large, established shrubs sequester nutrients and water within their biomass and alter soil resources directly under their canopy, creating “islands” of fertility. We hypothesized that these two phases were associated with shrubs having different physiological response capacities related to their age or size and the resource structure of the environment. As a corollary, we hypothesized that responses of small shrubs would be more tightly coupled to variation in soil moisture availability compared to large shrubs. To test these hypotheses, we studied gas exchange and water relations of small (establishing) and large (established) shrubs growing in the Jornada del Muerto as a function of varying soil moisture during the season. The small shrubs had greater net assimilation, stomatal conductance, transpiration, and xylem water potential than large shrubs following high summer rainfall in July, and highest seasonal soil moisture at 0.3 m. High rates of carbon assimilation and water use would be an advantage for small shrubs competing with grasses when shallow soil moisture was plentiful. Large shrubs had greater net assimilation and water-use efficiency, and lower xylem water potential than small shrubs following a dry period in September, when soil moisture at 0.3 m was lowest. Low xylem water potentials and high water-use efficiency would allow large shrubs to continue acquiring and conserving water as soil moisture is depleted. Although the study provides evidence of differences in physiological responses of different-sized shrubs, there was not support for the hypothesis that small shrubs are more closely coupled to variation in soil moisture availability than large shrubs. Small shrubs may actually be less coupled to soil moisture than large shrubs, and thus avoid conditions when continued transpiration could not be matched by equivalent water uptake.  相似文献   
35.
Two experiments were undertaken to investigate the effects of warming the body upon the responses during a subsequent cold water immersion (CWI). In both experiments the subjects, wearing swimming costumes, undertook two 45-min CWIs in water at 15° C. In experiment 1, 12 subjects exercised on a cycle ergometer until their rectal temperatures (T re) rose by an average of 0.73°C. They were then immediately immersed in the cold water. Before their other CWI they rested seated on a cycle ergometer (control condition). In experiment 2, 16 different subjects were immersed in a hot bath (40° C) until their T re rose by an average of 0.9° C; they were then immediately immersed in the cold water. Before their other CWI they were immersed in thermoneutral water (35° C; control condition). Heart rate in both experiments and respiratory frequency in experiment 1 were significantly (P < 0.05) higher during the first 30 s of CWI following active warming. In experiment 1, the rate of fall of T re during the final 15 min of CWI was significantly (P < 0.01) faster when CWI followed active warming (2.46° C · h–1) compared with the control condition (1.68°C · h–1). However, this rate was observed when absolute T re was still above that seen in the control CWIs. It is possible, therefore, that if longer CWIs had been undertaken, the two temperature curves may have converged and thereafter fallen at similar rates; this was the case with the aural temperature (T au) seen in experiment 1 and the T au and T re in experiment 2. It is concluded that pre-warming is neither beneficial nor detrimental to survival prospects during a subsequent CWI.  相似文献   
36.
Since the late eighties a handy and user-friendly sap flow meter (Dynagage®) is on the market which can quantify 0205 the sap flow through intact plant stems, based on the stem heat balance method. The documentation about its accuracy and reliability, however, is still too limited to use it as a standard method in field experiments with apple trees. We therefore tested this commercial system on potted apple trees (Malus domestica L.; cv. Red Elstar and Jonagold; on rootstock M9 vf) with stem diameters of 1.8 to 4 cm. The measured sap flow was compared with mass loss measured by an automated balance, supposing the total mass loss of the trees was equal to the water loss by transpiration. The results revealed three major problems:
1.  When there was no optimum contact of the elements of the gauge with the stem, which is typically very irregular on young apple trees, the calculated sap flow rates (accumulated through 24 h) showed errors >20%.
2.  On 4 year-old trees the calculated sap flow rate showed considerable time lags in periods with abruptly changing transpiration rates, mainly because this sap flow method does not account for energy which is stored in the heated stem section.
3.  The constant power input to the stem given with this sap flow meter caused heat damages to the bark tissue after >6 days of continuous measurements.
In order to avoid these problems we constructed a sap flow meter which guarantees an optimum contact with the stem and works with continuously controlled power supply. Both aspects, response time and effect on the bark tissue, could be improved: in all measurement series the average sap flow (during light period) deviated <4% and=" often="><1% from=" mass=" loss.=" the=" differences=" were=" usually="><15% for=" the=" short-term=" averages=" through=" 15–30=" min.=" the=" modified=" sap=" flow=" meter=" also=" proved=" reliable=" during=" 10-day=" measurements=" in=" the=" field.=" however,=" for=" time-accurate=" measurements=" on=" apple=" trees=" with=" a=" stem=" diameter=">3–4 cm accounting for the energy stored in the heated stem section became indispensable.  相似文献   
37.
A new approach to insect control—using sodium trichloroacetate (NaTCA) to inhibit synthesis of the hydrophobic cuticular lipids that protect insects from dehydration—was tested on Triatoma infestans. In vivo and in vitro studies of incorporation of radioactive precursors showed diminished cuticular hydrocarbon synthesis after NaTCA treatment. Thin layer chromatography and scanning electron microscopy showed disruption of the cuticular lipid layer of NaTCA-treated insects, which also have increased mortality and altered molting cycles. NaTCA treatment enhanced the penetration and increased the lethality of a contact insecticide. © 1994 Wiley-Liss, Inc.  相似文献   
38.
In order to evaluate the importance of growth of mosses in controlling evaporative water loss, the evaporation rates of some subalpine moss species of various growth forms were compared with each other. The growth forms of the xerophytic species examined were large cushion and compact mat, while those of the mesophytic species in the coniferous forest floor were smooth mat, weft and tall turf. The evaporation rate per moss dry weight (Ew) was much smaller in the xerophytic species than in the mesophytic species. However, the evaporation rate per basal area of moss colony (Ea) was not necessarily smaller in the xerophytic species. The relation between Ea and dry weight per basal area of the colony (Wa) had a close correlation with the growth form. It was concluded that the difference in the evaporation rate per weight between the exerophytic species and the mesophytic species was largely due to the difference in Wa, and that the growth forms of the xerophytic species were suitable for increasing Wa without increasing surface roughness.  相似文献   
39.
Yang  X.  Römheld  V.  Marschner  H. 《Plant and Soil》1993,155(1):441-444
Pot experiments were conducted with a calcareous soil (Inceptisol) to elucidate the effects of bicarbonate (0 and 20 mM) and root zone temperature (15° and 25°C) on the uptake of Zn, Fe, Mn and Cu by "Zn-efficient" and "Zn-inefficient" rice cultivars. Bicarbonate decreased concentrations and total uptake of Zn in shoots of "Zn-inefficient" cultivars, especially of IR 26 at 25°C, but not in Zn-efficient cultivars. Bicarbonate decreased concentrations and uptake of Fe in shoots of Zn inefficient cultivars, particularly in IR 26. Concentrations and total uptake of Mn were lower in bicarbonate treatment in the Zn-inefficient cultivars at 15°C, and in all cultivars at 25°C. However, concentration and uptake of Cu were not affected by bicarbonate in all cultivars. Compared to the 25°C root zone temperature, the concentrations and total uptake of both Zn and Cu in shoots at 15°C were lower in Zn-inefficient than in the Zn-efficient cultivars. The results indicate that Zn-efficiency in rice is causally related to high tolerance of plant to elavated bicarbonate concentrations in soil solution.  相似文献   
40.
Choanoflagellates and sponges feed by filtering microscopic particles from water currents created by the flagella of microvillar collar complexes situated on the cell bodies of the solitary or colonial choanoflagellates and on the choanocytes in sponges. The filtering mechanism has been known for more than a century, but only recently has the filtering process been studied in detail and also modelled, so that a detailed picture of the water currents has been obtained. In the solitary and most of the colonial choanoflagellates, the water flows freely around the cells, but in some forms, the cells are arranged in an open meshwork through which the water can be pumped. In the sponges, the choanocytes are located in choanocyte chambers (or choanocyte areas) with separate incurrent and excurrent canals/pores located in a larger body, which enables a fixed pattern of water currents through the collar complexes. Previous theories for the origin of sponges show evolutionary stages with choanocyte chambers without any opening or with only one opening, which makes separation of incurrent and excurrent impossible, and such stages must have been unable to feed. Therefore a new theory is proposed, which shows a continuous evolutionary lineage in which all stages are able to feed by means of the collar complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号