首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   876篇
  免费   50篇
  国内免费   13篇
  2023年   10篇
  2022年   23篇
  2021年   33篇
  2020年   27篇
  2019年   43篇
  2018年   38篇
  2017年   32篇
  2016年   20篇
  2015年   19篇
  2014年   70篇
  2013年   101篇
  2012年   14篇
  2011年   31篇
  2010年   26篇
  2009年   33篇
  2008年   44篇
  2007年   32篇
  2006年   45篇
  2005年   22篇
  2004年   35篇
  2003年   38篇
  2002年   17篇
  2001年   15篇
  2000年   21篇
  1999年   18篇
  1998年   15篇
  1997年   19篇
  1996年   11篇
  1995年   10篇
  1994年   7篇
  1993年   4篇
  1992年   11篇
  1991年   7篇
  1990年   2篇
  1989年   6篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1980年   5篇
  1979年   6篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有939条查询结果,搜索用时 15 毫秒
91.
Ahsg (fetuin-A) is a 55-59 kDa phosphorylated glycoprotein synthesized in the adult predominantly by hepatocytes, from which it enters the circulation. When dysregulated, this glycoprotein operates to influence the clinical sequelae of insulin resistance-type 2 diabetes and cardiovascular disease. The pathological sequelae likely arise from two separable molecular “faces” of Ahsg—one acting at the level of the insulin receptor and a second face influencing ectopic biomineralization in the intima. A detailed understanding of these two functional faces of Ahsg is not yet clear for lack of structural studies. Ahsg has a physiological role in the biomineralization of bone, which when dysregulated can lead to ectopic calcification of soft tissues in the vasculature. Ahsg has a second physiological function in regulating how insulin signals through its receptor, a transmembrane tyrosine kinase. Dysregulation of this “face” of Ahsg results in morbid sequelae such as impaired glucose disposal and fatty liver. Ahsg binds to tandem fibronectin type 3 (Fn3) domains present in the 194 amino acid residue extracellular portion of the β-subunit of the insulin receptor, distant from the high-affinity pocket formed by two complementing α-subunits where insulin binds. Only two proteins are known to bind directly to the insulin receptor ectodomain - insulin and Ahsg - the former turns on the receptor's intrinsic tyrosine kinase (TK) activity, and the latter shuts it down. Recent X-ray crystallographic studies of the ectodomain of the insulin receptor now sharpen our understanding of the receptor's extracellular α-subunit and linked β-subunit. Ahsg genotype and its circulating level have been correlated with body morphometrics (obese versus lean and visceral adiposity) in epidemiological studies enrolling thousands of patients. Epidemiological studies from the clinic reveal high levels of circulating Ahsg in insulin resistance and diabetes. This review endeavors to explain how one protein can mediate diverse pathologies, but specifically addresses its metabolic “face” blunting insulin receptor activity, an action leading to insulin resistance.  相似文献   
92.
Yang T  Wu JC  Yan C  Wang Y  Luo R  Gonzales MB  Dalby KN  Ren P 《Proteins》2011,79(6):1940-1951
Effective virtual screening relies on our ability to make accurate prediction of protein-ligand binding, which remains a great challenge. In this work, utilizing the molecular-mechanics Poisson-Boltzmann (or Generalized Born) surface area approach, we have evaluated the binding affinity of a set of 156 ligands to seven families of proteins, trypsin β, thrombin α, cyclin-dependent kinase (CDK), cAMP-dependent kinase (PKA), urokinase-type plasminogen activator, β-glucosidase A, and coagulation factor Xa. The effect of protein dielectric constant in the implicit-solvent model on the binding free energy calculation is shown to be important. The statistical correlations between the binding energy calculated from the implicit-solvent approach and experimental free energy are in the range of 0.56-0.79 across all the families. This performance is better than that of typical docking programs especially given that the latter is directly trained using known binding data whereas the molecular mechanics is based on general physical parameters. Estimation of entropic contribution remains the barrier to accurate free energy calculation. We show that the traditional rigid rotor harmonic oscillator approximation is unable to improve the binding free energy prediction. Inclusion of conformational restriction seems to be promising but requires further investigation. On the other hand, our preliminary study suggests that implicit-solvent based alchemical perturbation, which offers explicit sampling of configuration entropy, can be a viable approach to significantly improve the prediction of binding free energy. Overall, the molecular mechanics approach has the potential for medium to high-throughput computational drug discovery.  相似文献   
93.
应用分析力学的方法讨论了SIR传染病数学模型方程,得到了与其对应的Lagrange函数和Noether守恒量,并根据Noether守恒量具体探讨了对感染病者和易感染病者人群的隔离率与患病者人数最大值的关系.  相似文献   
94.
We review recent results about the functioning of aquatic carnivorous traps from the genus Utricularia. The use of high speed cameras has helped to elucidate the mechanism at the origin of the ultra fast capture process of Utricularia, at a millisecond time scale. As water is pumped out of the trap, pressure decreases inside the trap and elastic energy is stored due to the change of shape of the trap body. This energy is suddenly released when the trap is fired: the trap door undergoes an elastical instability: buckling, which allows its fast and passive opening and closure. This mechanism is used by Utricularia both to catch preys touching its trigger hairs and to fire spontaneously at regular time intervals. The results leading to this interpretation are reviewed and discussed and suggestions for further work are briefly presented.  相似文献   
95.
Inferential structure determination uses Bayesian theory to combine experimental data with prior structural knowledge into a posterior probability distribution over protein conformational space. The posterior distribution encodes everything one can say objectively about the native structure in the light of the available data and additional prior assumptions and can be searched for structural representatives. Here an analogy is drawn between the posterior distribution and the canonical ensemble of statistical physics. A statistical mechanics analysis assesses the complexity of a structure calculation globally in terms of ensemble properties. Analogs of the free energy and density of states are introduced; partition functions evaluate the consistency of prior assumptions with data. Critical behavior is observed with dwindling restraint density, which impairs structure determination with too sparse data. However, prior distributions with improved realism ameliorate the situation by lowering the critical number of observations. An in-depth analysis of various experimentally accessible structural parameters and force field terms will facilitate a statistical approach to protein structure determination with sparse data that avoids bias as much as possible.  相似文献   
96.
BACKGROUND AND AIMS: Cleavers (Galium aparine) is a fast-growing herbaceous annual with a semi-self-supporting, scrambling-ascending growth habit. Mature plants often use upright species for support. It is common in hedgerows and on waste ground. This study aims to characterize the mechanical behaviour of the stem and roots of cleavers and relate this to the arrangement of structural tissue, the net microfibrillar orientations in the cell walls, and plant growth habit. METHODS: The morphology and mechanics of mature cleavers was investigated using plants grown in pots and ones collected from the grounds at the University of Lincoln, Lincoln, UK. Tensile tests were carried out on the stem and the basal section of the first-order lateral roots. The net orientation of cellulose microfibrils in the cell walls was investigated using polarized light microscopy. KEY RESULTS: Results show that the basal regions of the stem and first-order lateral roots were highly extensible. Breaking strains of 24 +/- 7% were recorded for the stem base and 28 +/- 6% for the roots. Anatomical observations showed that the lower stem (base + 100 mm) was circular in cross-section with a solid central core of vascular tissue, whereas further up the stem the transverse section showed a typical four-angled shape with a ring-like arrangement of vascular tissue and sclerenchyma bundles in the corners. The net orientation of wall microfibrils in the secondary xylem diverges from the longitudinal by between 8 and 9 degrees . CONCLUSIONS: The basal region of the stem of cleavers is highly extensible, but the mechanism by which the stem is able to withstand such high breaking strains is unclear; reorientation of the cellulose fibrils in the stem along the axis of loading is not thought to be responsible.  相似文献   
97.
Caecilians have two functionally separate sets of jaw closing muscles. The jaw adductor muscles are parallel fibered muscles positioned close to the jaw joint and their lever mechanics suggests they are well suited to rapidly closing the jaws. A second set of muscles, the hypaxial interhyoideus posterior (IHP), levers the jaws closed by pulling on the retroarticular process (RA) of the lower jaw. Models of the lower jaw point out that the angle and length of the RA has a profound effect on the closure force exerted by the IHP. The caecilian skull is streptostylic – the quadrate-squamosal apparatus (QSA) moves relative to the rest of the skull, a condition that seems at odds with a well-ossified cranium. Modeling the contribution of this streptostylic suspension of the lower jaw shows that rotational freedom of the QSA amplifies the force of the IHP by redirecting force applied along the low axis of the lower jaw. Measurements from several species and life stages of preserved caecilians reveal a large variation in predicted bite force (as a multiple of IHP force) with age and phylogeny.  相似文献   
98.
Actin-crosslinking proteins organize actin filaments into dynamic and complex subcellular scaffolds that orchestrate important mechanical functions, including cell motility and adhesion. Recent mutation studies have shown that individual crosslinking proteins often play seemingly non-essential roles, leading to the hypothesis that they have considerable redundancy in function. We report live-cell, in vitro, and theoretical studies testing the mechanical role of the two ubiquitous actin-crosslinking proteins, alpha-actinin and fascin, which co-localize to stress fibers and the basis of filopodia. Using live-cell particle tracking microrheology, we show that the addition of alpha-actinin and fascin elicits a cell mechanical response that is significantly greater than that originated by alpha-actinin or fascin alone. These live-cell measurements are supported by quantitative rheological measurements with reconstituted actin filament networks containing pure proteins that show that alpha-actinin and fascin can work in concert to generate enhanced cell stiffness. Computational simulations using finite element modeling qualitatively reproduce and explain the functional synergy of alpha-actinin and fascin. These findings highlight the cooperative activity of fascin and alpha-actinin and provide a strong rationale that an evolutionary advantage might be conferred by the cooperative action of multiple actin-crosslinking proteins with overlapping but non-identical biochemical properties. Thus the combination of structural proteins with similar function can provide the cell with unique properties that are required for biologically optimal responses.  相似文献   
99.
Large stretching and un-stretching force response of adherent fibroblasts is measured by micromachined mechanical force sensors. The force sensors are composed of a probe and flexible beams. The probe, functionalized by fibronectin, is used to contact the cells. The flexible beams are the sensing element. The sensors are made of single crystal silicon and fabricated by the SCREAM process. The maximum cell stretch reached is approximately 50 microm, which is about twice of the cell initial size, and the time delay between two consecutive stretching/un-stretching steps is 75 s unless otherwise stated. We find that the force response of the cells is strongly linear, reversible, and repeatable, with a small stiffening at the initial deformation stage. Force response of single cells measured before and after cytochalasin D treatment suggests that actin filaments take almost all the cell internal forces due to stretch. These findings may shed light on the increasing understanding on the mechanical behavior of cells and provide clues for making new classes of biological materials having uncommon properties.  相似文献   
100.
Continuum solvent models such as Generalized-Born and Poisson–Boltzmann methods hold the promise to treat solvation effect efficiently and to enable rapid scoring of protein structures when they are combined with physics-based energy functions. Yet, direct comparison of these two approaches on large protein data set is lacking. Building on our previous work with a scoring function based on a Generalized-Born (GB) solvation model, and short molecular-dynamics simulations, we further extended the scoring function to compare with the MM-PBSA method to treat the solvent effect. We benchmarked this scoring function against seven publicly available decoy sets. We found that, somewhat surprisingly, the results of MM-PBSA approach are comparable to the previous GB-based scoring function. We also discussed the effect to the scoring function accuracy due to presence of large ligands and ions in some native structures of the decoy sets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号