首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   0篇
  2019年   1篇
  2015年   2篇
  2013年   1篇
  2011年   1篇
  2007年   1篇
  2006年   2篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   7篇
  1991年   2篇
  1990年   4篇
  1989年   5篇
  1988年   7篇
  1987年   3篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   5篇
排序方式: 共有82条查询结果,搜索用时 15 毫秒
41.
Lysophosphatidylcholine (LPC) has been reported to stimulate Na+-H+ exchange in rat cardiomyocytes. This action may be important in pathological conditions like ischemic injury where LPC is generated and Na+-H+ exchange activation is an important determinant of cardiac damage and dysfunction. It is unclear, however, if this stimulation of Na+-H+ exchange by LPC occurs through a direct action on the exchanger or through stimulation of a second messenger pathway. The purpose of the present investigation was to determine if lysolipids could directly affect Na+-H+ exchange. Purified cardiac sarcolemmal membranes were isolated and Na+-H+ exchange was measured by radioisotopic methods following addition of LPC. There were no effects of LPC on Na+-H+ exchange at LPC concentrations of 100 M at all reaction times examined. Lysophosphatidylethanolamine (LPE), lysophosphatidylserine (LPS), lysophosphatidylinositol (LPI) and lysoplasmenylcholine (LPEC) also did not alter Na+-H+ exchange at all concentrations and reaction times examined. We conclude that any stimulatory effects of lysolipids on Na+-H+ exchange do not occur through a direct action on the exchanger or its membrane lipid environment and must occur through a second messenger pathway.  相似文献   
42.
Recent work has suggested that caveolae biogenesis and transverse-tubule (T-tubule) formation in muscle cells share similar underlying features. We compared the properties of caveolin-1 (cav-1)-positive caveolae, in epithelial cells, with caveolin-3 (cav-3)-positive precursor T-tubules, in differentiating C2C12 muscle cells, using the cholesterol-binding drug, Amphotericin B (AmphB). Treatment of MDCK epithelial cells with acute high doses or chronic low doses of AmphB caused a loss of surface caveolae and the rapid redistribution of cav-1, and exogenously expressed cav-3, from the cell surface into modified endosomes. This effect was reversible and specific, as the GPI-anchored protein, alkaline phosphatase, was largely unaffected by the treatment unless it had been previously partitioned into caveolar domains. In differentiating C2C12 mouse myotubes, AmphB also caused a complete redistribution of cav-3 from precursor T-tubule elements into enlarged endosomes, morphologically very similar to those seen in MDCK cells. This was accompanied by redistribution of a T-tubule marker and a dramatic reduction in the extent of surface-connected tubular elements. We propose that cholesterol-enriched glycolipid 'raft' domains are involved in the formation and maintenance of diverse membrane systems including caveolae and the T-tubule system of muscle.  相似文献   
43.
Mature muscle has a unique structure that is amenable to live cell imaging. Herein, we describe the experimental protocol for expressing fluorescently labeled proteins in the flexor digitorum brevis (FDB) muscle. Conditions have been optimized to provide a large number of high quality myofibers expressing the electroporated plasmid while minimizing muscle damage. The method employs fluorescent tags on various proteins. Combining this expression method with high resolution confocal microscopy permits live cell imaging, including imaging after laser-induced damage. Fluorescent dyes combined with imaging of fluorescently-tagged proteins provides information regarding the basic structure of muscle and its response to stimuli.  相似文献   
44.
45.
A chain is no stronger than its weakest link is an old idiom that holds true for muscle biology. As the name implies, skeletal muscle’s main function is to move the bones. However, for a muscle to transmit force and withstand the stress that contractions give rise to, it relies on a chain of proteins attaching the cytoskeleton of the muscle fiber to the surrounding extracellular matrix. The importance of this attachment is illustrated by a large number of muscular dystrophies caused by interruption of the cytoskeletal-extracellular matrix interaction. One of the major components of the extracellular matrix is laminin, a heterotrimeric glycoprotein and a major constituent of the basement membrane. It has become increasingly apparent that laminins are involved in a multitude of biological functions, including cell adhesion, differentiation, proliferation, migration and survival. This review will focus on the importance of laminin-211 for normal skeletal muscle function.  相似文献   
46.
The assembly, processing and translocation of proteins occur constantly in all cells, and these processes also take place during the genesis, maintenance and repair of skeletal muscle. Skeletal muscle fibers are composed of myofibrils and are surrounded by a muscle plasma membrane, the sarcolemma. The sarcolemma serves as a docking location for many proteins. These proteins are important for establishing the physical connection between the extracellular matrix and the cytoskeleton and play a role in transmitting force related to muscle contraction. This physical connection is maintained through a myriad of proteins including the dystrophin glycoprotein complex (DGC). Normal sarcolemmal function requires proper DGC synthesis and positioning, and perturbation of the DGC leads to muscle membrane instability and disease.  相似文献   
47.
We hypothesise that the sarcolemma of an actively growing myofibre has different properties to the sarcolemma of a mature adult myofibre. Such fundamentally different properties have clinical consequences for the onset, and potential therapeutic targets, of various skeletal muscle diseases that first manifest either during childhood (e.g. Duchenne muscular dystrophy, DMD) or after cessation of the main growth phase (e.g. dysferlinopathies). These characteristics are also relevant to the selection of both tissue culture and in vivo models employed to study such myopathies and the molecular regulation of adult myofibres. During growth, multinucleated myofibres increase enormously in size and volume with dramatic increases in length (up to ~600 mm). This is in striking contrast with most mononucleated cells such as fibroblasts, that remain at a relatively small size (~10–20 µm diameter). The consequences of a dynamic, expanding sarcolemma during growth, compared with that of an adult myofibre of a fixed length, are discussed with respect to various aspects of muscle biology.  相似文献   
48.
Ischemic preconditioning (IPC) is the phenomenon whereby brief periods of ischemia have been shown to protect the myocardium against a sustained ischemic insult. The result of IPC may be manifest as a marked reduction in infarct size, myocardial stunning, or incidence of arrhythmias. While many substances and pathways have been proposed to play a role in the signal transduction mediating the cardioprotective effect of IPC, overwhelming evidence indicates an intimate involvement of the ATP-sensitive potassium channel (KATP channel) in this process. Initial hypotheses suggested that the surface or sarcolemmal KATP (sarcKATP) channel mediated the cardioprotective effects of IPC. However, much research has subsequently supported a major role for the mitochondrial KATP channel (mitoKATP) as the one involved in IPC-mediated cardioprotection. This review presents evidence to support a role for the sarcKATP or the mitoKATP channel as either triggers and/or downstream mediators in the phenomenon of IPC.  相似文献   
49.
Spinal muscular atrophy (SMA) is characterized by degeneration of motor neurons of the spinal cord associated with muscle paralysis and caused by mutations of the survival motor neuron gene (SMN). To determine whether SMN gene defect in skeletal muscle might have a role in SMA pathogenesis, deletion of murine SMN exon 7, the most frequent mutation found in SMA, has been restricted to skeletal muscle by using the Cre-loxP system. Mutant mice display ongoing muscle necrosis with a dystrophic phenotype leading to muscle paralysis and death. The dystrophic phenotype is associated with elevated levels of creatine kinase activity, Evans blue dye uptake into muscle fibers, reduced amount of dystrophin and upregulation of utrophin expression suggesting a destabilization of the sarcolemma components. The mutant mice will be a valuable model for elucidating the underlying mechanism. Moreover, our results suggest a primary involvement of skeletal muscle in human SMA, which may contribute to motor defect in addition to muscle denervation caused by the motor neuron degeneration. These data may have important implications for the development of therapeutic strategies in SMA.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号