首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   0篇
  2019年   1篇
  2015年   2篇
  2013年   1篇
  2011年   1篇
  2007年   1篇
  2006年   2篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   7篇
  1991年   2篇
  1990年   4篇
  1989年   5篇
  1988年   7篇
  1987年   3篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   5篇
排序方式: 共有82条查询结果,搜索用时 484 毫秒
21.
A major protein in detergent extracts of skeletal muscle appears at 38,000 daltons in electrophoretic separations. Previous investigations have provided indirect evidence that a 38-kD skeletal muscle protein is membrane associated, and this inference has served as the basis for speculations on 38-kD protein function. In the present study, affinity purified, polyclonal antisera against 38-kD protein from skeletal muscle are produced for immunolocalization and biochemical assays. Immunoblots of two-dimensional electrophoretic separations show that this protein is heterogenously charged at pI approximately 6.4. This 38-kD protein is not extracted from muscle in low ionic strength or high ionic strength buffers, in isotonic buffers from pH 4 to pH 8 or in buffers containing 5 mM EGTA. The 38-kD protein is extracted, however, by isotonic, pH 7.0 buffer containing 1.0% Triton-X. Light microscope observations using indirect immunofluorescence of anti-38-kD labeled tissue show the protein distributed in a reticular pattern within cross-sectional muscle but not at the cell surface. Longitudinal sections show the protein concentrated in periodic, transverse bands. Purified fractions of muscle plasma membrane analyzed by immunoblotting contain 38-kD protein. Immunoblots using anti-38 kD show that this protein is present in all vertebrate skeletal muscle examined, however, the protein is present only in cardiac muscle that contains transverse tubules. The antibody does not recognize aldolase, another 38-kD striated muscle protein.  相似文献   
22.
Defining the organization of endocytic pathway in multinucleated skeletal myofibers is crucial to understand the routing of membrane proteins, such as receptors and glucose transporters, through this system. Here we analyzed the organization of the endocytic trafficking pathways in isolated rat myofibers. We found that sarcolemmal-coated pits and transferrin receptors were concentrated in the I band areas. Fluid phase markers were taken up into vesicles in the same areas along the whole length of the fibers and were then delivered into structures around and between the nuclei. These markers also accumulated beneath the neuromuscular and myotendinous junctions. The recycling compartment, labeled with transferrin, appeared as perinuclear and interfibrillar dots that partially colocalized with the GLUT4 compartment. Low-density lipoprotein, a marker of the lysosome-directed pathway, was transported into sparsely distributed perinuclear and interfibrillar dots that contacted microtubules. A majority of these dots did not colocalize with internalized transferrin, indicating that the recycling and the lysosome-directed pathways were distinct. In conclusion, the I band areas were active in endocytosis along the whole length of the multinucleated myofibers. The sorting endosomes distributed in a cross-striated fashion while the recycling and late endosomal compartments showed perinuclear and interfibrillar localizations and followed the course of microtubules.  相似文献   
23.
Alamethicin is commonly used as an agent for unmasking the latent enzyme activities in vesicular membrane preparations; however, relatively little is known about the effect of this agent on the characteristics of adenylyl cyclase in heart sarcolemma. By employing rat heart sarcolemmal preparation, we observed 5 to 6 fold increase in adenylyl cyclase activity upon treatment with alamethicin. Kinetic experiments using various concentrations of MgATP revealed that the increase in adenylyl cyclase activity in alamethicin treated membranes was associated with an increase in Vmax as well as affinity of the substrate for the enzyme. Dose-responses of the control and alamethicin-treated preparations to various activators of adenylyl cyclase revealed that the sensitivity of the enzyme to forskolin, NaF and GppNHp, was markedly increased upon treating sarcolemma with alamethicin. The activation of adenylyl cyclase by forskolin was also enhanced by increasing the concentration of alamethicin in the incubation medium. Furthermore, there was a greater increase in adenylyl cyclase activity with different concentrations of Mn2+ in the presence of alamethicin. These results suggest that alamethicin treatment alters the characteristics of adenylyl cyclase in addition to unmasking the enzyme activity in the purified sarcolemmal vesicular preparation.  相似文献   
24.
Oxygen free radicals and calcium homeostasis in the heart   总被引:10,自引:0,他引:10  
Many experiments have been done to clarify the effects of oxygen free radicals on Ca2+ homeostasis in the hearts. A burst of oxygen free radicals occurs immediately after reperfusion, but we have to be reminded that the exact levels of oxygen free radicals in the hearts are yet unknown in both physiological and pathophysiological conditions. Therefore, we should give careful consideration to this point when we perform the experiments and analyze the results. It is, however, evident that Ca2+ overload occurs when the hearts are exposed to an excess amount of oxygen free radicals. Though ATP-independent Ca2+ binding is increased, Ca2+ influx through Ca2+ channel does not increase in the presence of oxygen free radicals. Another possible pathway through which Ca2+ can enter the myocytes is Na+?Ca2+ exchanger. Although, the activities of Na+?K+ ATPase and Na+?H+ exchange are inhibited by oxygen free radicals, it is not known whether intracellular Na+ level increases under oxidative stress or not. The question has to be solved for the understanding of the importance of Na+?Ca2+ exchange in Ca2+ influx process from extracellular space. Another question is ‘which way does Na+?Ca2+ exchange work under oxidative stress? Net influx or efflux of Ca2+?’ Membrane permeability for Ca2+ may be maintained in a relatively early phase of free radical injury. Since sarcolemmal Ca2+-pump ATPase activity is depressed by oxygen free radicals, Ca2+ extrusion from cytosol to extracellular space is considered to be reduced. It has also been shown that oxygen free radicals promote Ca2+ release from sarcoplasmic reticulum and inhibit Ca2+ sequestration to sarcoplasmic reticulum. Thus, these changes in Ca2+ handling systems could cause the Ca2+ overload due to oxygen free radicals.  相似文献   
25.
This study examined the status of sarcolemmal Na+/K+-ATPase activity in rat heart under conditions of Ca2+-paradox to explore the existence of a relationship between changes in Na+/K+-pump function and myocardial Na+ as well as K+ content. One min of reperfusion with Ca2+ after 5 min of Ca2+-free perfusion reduced Na+/K+-ATPase activity in the isolated heart by 53% while Mg2+-ATPase, another sarcolemmal bound enzyme, retained 74% of its control activity. These changes in sarcolemmal ATPase activities were dependent on the duration and Ca2+ concentration of the initial perfusion and subsequent reperfusion periods; however, the Na+/K+-ATPase activity was consistently more depressed than Mg2+-ATPase activity under all conditions. The depression in both enzyme activities was associated with a reduction in Vmax without any changes in Km values. Low Na+ perfusion and hypothermia, which protect the isolated heart from the Ca2+-paradox, also prevented reperfusion-induced enzyme alterations. A significant relationship emerged upon comparison of the changes in myocardial Na+ and K+ content to Na+/K+-ATPase activity under identical conditions. At least 60% of the control enzyme activity was necessary to maintain normal cation gradients. Depression of the Na+/K+-ATPase activity by 60-65% resulted in a marked increase and decrease in intracellular Na+ and K+ content, respectively. These results suggest that changes in myocardial Na+ and K+ content during Ca2+-paradox are related to activity of the Na+/K+-pump; the impaired Na+/K+-ATPase activity may lead to augmentation of Ca2+-overload via an enhancement of the Na+/Ca2+-exchange system.  相似文献   
26.
Evidence indicates that, in addition to the Ltype Ca2+ channel blockade, Ca2+antagonists target other functions including the Ca2+pumps. This study was conducted to test the possibility that the reported inhibition of heart sarcolemmal (SL) and sarcoplasmic reticular (SR) Ca2+pumps by verapamil and diltiazem could be due to druginduced depression of phosphatidylethanolamine (PE) Nmethylation which modulates these Ca2+transport systems. Three catalytic sites individually responsible for the synthesis of PE monomethyl (site I), dimethyl (site II) and trimethyl (phosphatidylcholine (PC), site III) derivates were examined in SL and SR membranes by employing different concentrations of SadenosylLmethionine (AdoMet). Total methyl group incorporation into SL PE, in vitro, was significantly depressed by 10–6–10–3 M verapamil or diltiazem at site III. The catalytic activity of site I was inhibited by 10–3 M verapamil only, whereas the site II activity was not affected by these drugs. The inhibition induced by verapamil or diltiazem (10–5 M) was associated with a depression of the Vmax value without any change in the apparent affinity for AdoMet. Both drugs decreased the SR as well as mitochondrial PE Nmethylation at site III. A selective depression of site III activity was also observed in SL isolated from hearts of rats treated with verapamil in vivo. Furthermore, administration of [3H-methyl]methionine following the treatment of animals with verapamil, reduced the synthesis of PC by Nmethyltransferase. Verapamil also depressed the N-methylation-dependent positive inotropic effect induced by methionine in the isolated Langendorff heart. Both agents depressed the SL Ca2+pump and although diltiazem also inhibited the SR Ca2+pump, verapamil exerted a stimulatory effect. In addition, verapamil decreased SR Ca2+-release. These results suggest that verapamil and diltiazem alter the cardiac PE Nmethyltransferase system. This action is apparently additional to the drugs' effect on Ltype Ca2+ channels and may serve as a biochemical mechanism for the drugs' inhibition of the cardiac Ca2+pumps and altered cardiac function.  相似文献   
27.
Changes in impedance at 2 kHz, adenosine triphosphate (ATP) content, and muscle contraction were evaluated in yellowtail during 0 (ice), 5, 10, 15, and 20°C storage. Histological changes during ice storage were also measured. At any temperature, although impedance increased with both rigor mortis and ATP consumption during early storage, it began to decrease rapidly when ATP was almost depleted. Moreover, temporarily increasing impedance had a strong relationship with ATP content; decreasing impedance had a significant correlation with storage temperature after ATP depletion. Furthermore, impedance increased with narrowing of intercellular spaces when sarcolemma was intact and decreased with expansion of intercellular spaces when sarcolemma was leaky. Meanwhile, changes of sarcolemma and intercellular spaces were accompanied by ATP change. Thus, ATP is one significant physiological factor for impedance change, and temperature greatly influenced impedance after depletion of ATP. Results suggest that impedance analysis can be used as a convenient and nondestructive method to diagnose condition of tissue at different storage temperatures. Bioelectromagnetics. 2019;40:488–497. © 2019 Bioelectromagnetics Society  相似文献   
28.
Although the enzyme (Na+ + K+)-ATPase has been extensively characterized, few studies of its major role, ATP-dependent Na+ pumping, have been reported in vesicular preparations. This is because it is extremely difficult to determine fluxes of isotopic Na+ accurately in most isolated membrane systems. Using highly purified cardiac sarcolemmal vesicles, we have developed a new technique to detect relative rates of ATP-dependent Na+ transport sensitively. This technique relies on the presence of Na+-Ca2+ exchange and ATP-driven Na+ pump activities on the same inside-out sarcolemmal vesicles. ATP-dependent Na+ uptake is monitored by a subsequent Nai+-dependent Ca2+ uptake reaction (Na+-Ca2+ exchange) using 45Ca2+. We present evidence that the Na+-Ca2+ exchange will be linearly related to the prior active Na+ uptake. Although this method is indirect, it is much more sensitive than a direct approach using Na+ isotopes. Applying this method, we measure cardiac ATP-dependent Na+ transport and (Na+ + K+)-ATPase activities in identical ionic media. We find that the (Na+ + K+)-ATPase and the Na+ pump have identical dependencies on both Na+ and ATP. The dependence on [Na+] is sigmoidal, with a Hill coefficient of 2.8. Na+ pumping is half-maximal at [Na+] = 9 mM. The Km for ATP is 0.21 mM. ADP competitively inhibits ATP-dependent Na+ pumping. This approach should allow other new investigations on on ATP-dependent Na+ transport across cardiac sarcolemma.  相似文献   
29.
Vesicles isolated from rat heart, particularly enriched in sarcolemma markers, were examined for their sidedness by investigation of side-specific interactions of modulators with the asymmetric (Na+ + K+)-ATPase and adenylate cyclase complex. The membrane preparation with the properties expected for inside-out vesicles showed the highest rate of ATP-driven Ca2+ transport. The Ca2+ pump was stimulated 1.7- and 2.1-fold by external Na+ and K+, respectively, the half-maximal activation occurring at 35 mM monovalent cation concentration. In vesicles loaded with Ca2+ by pump action in a medium containing 160 mM KCl, a slow spontaneous release of Ca2+ started after 2 min. The rate of this release could be dramatically increased by the addition of 40 mM NaCl to the external medium. In contrast, 40 mM KCl exerted no appreciable effect on vesicles loaded with Ca2+ in a medium containing 160 mM NaCl. Ca2+ movements were also studied in the absence of ATP and Mg2+. Vesicles containing an outwardly directed Na+ gradient showed the highest Ca2+ uptake activity. These findings suggested the operation of a Ca2+/Na+ antiporter in addition to the active Ca2+ pump in these sarcolemmal vesicles. A valinomycin-induced inward K+-diffusion potential stimulated the Na+- Ca2+ exchange, suggesting its electrogenic nature. If in the absence of ATP and Mg2+ the transmembrane Nai+/Nao+ gradient exceeded 160/15 mM concentrations, Ca2+ uptake could be stimulated by the addition of 5 mM oxalate, indicating Na+ gradient-induced Ca2+ uptake to be a translocation of Ca2+ to the lumen of the vesicle. A sarcoplasmic reticulum contamination, removed by further sucrose gradient fractionation, contained rather low Na+-Ca2+ exchange activity. This result suggests that the activity can be entirely accounted for by the sarcolemmal content of the cardiac membrane preparation.  相似文献   
30.
γ-Sarcoglycan is a transmembrane, dystrophin-associated protein expressed in skeletal and cardiac muscle. The murine γ-sarcoglycan gene was disrupted using homologous recombination. Mice lacking γ-sarcoglycan showed pronounced dystrophic muscle changes in early life. By 20 wk of age, these mice developed cardiomyopathy and died prematurely. The loss of γ-sarcoglycan produced secondary reduction of β- and δ-sarcoglycan with partial retention of α- and ε-sarcoglycan, suggesting that β-, γ-, and δ-sarcoglycan function as a unit. Importantly, mice lacking γ-sarco- glycan showed normal dystrophin content and local- ization, demonstrating that myofiber degeneration occurred independently of dystrophin alteration. Furthermore, β-dystroglycan and laminin were left intact, implying that the dystrophin–dystroglycan–laminin mechanical link was unaffected by sarcoglycan deficiency. Apoptotic myonuclei were abundant in skeletal muscle lacking γ-sarcoglycan, suggesting that programmed cell death contributes to myofiber degeneration. Vital staining with Evans blue dye revealed that muscle lacking γ-sarcoglycan developed membrane disruptions like those seen in dystrophin-deficient muscle. Our data demonstrate that sarcoglycan loss was sufficient, and that dystrophin loss was not necessary to cause membrane defects and apoptosis. As a common molecular feature in a variety of muscular dystrophies, sarcoglycan loss is a likely mediator of pathology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号