首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1667篇
  免费   107篇
  国内免费   177篇
  1951篇
  2024年   3篇
  2023年   21篇
  2022年   25篇
  2021年   40篇
  2020年   43篇
  2019年   57篇
  2018年   45篇
  2017年   54篇
  2016年   56篇
  2015年   53篇
  2014年   53篇
  2013年   124篇
  2012年   54篇
  2011年   42篇
  2010年   56篇
  2009年   56篇
  2008年   48篇
  2007年   70篇
  2006年   72篇
  2005年   65篇
  2004年   48篇
  2003年   73篇
  2002年   58篇
  2001年   76篇
  2000年   63篇
  1999年   32篇
  1998年   41篇
  1997年   38篇
  1996年   44篇
  1995年   35篇
  1994年   34篇
  1993年   48篇
  1992年   31篇
  1991年   34篇
  1990年   36篇
  1989年   26篇
  1988年   27篇
  1987年   25篇
  1986年   25篇
  1985年   21篇
  1984年   22篇
  1983年   9篇
  1982年   14篇
  1981年   14篇
  1980年   15篇
  1979年   6篇
  1978年   8篇
  1977年   3篇
  1976年   2篇
  1973年   3篇
排序方式: 共有1951条查询结果,搜索用时 0 毫秒
101.
In the Baltic Sea area, the cladoceran Daphnia magna is commonly found in brackish water rockpools and it has been suggested that salinity is one of the niche dimensions that affects the distribution of the species. The salinity tolerance of D. magna was studied both in physiological and life history experiments. The experimental salinities were freshwater, 4S and 8S. The highest respiration and ammonium excretion rates were measured in the freshwater treatment with decreasing respiration and ammonium excretion rates at higher salinities. The lowest O/N ratio (oxygen consumption to ammonium excretion), describing the metabolic status of an organism, was obtained at 8S, although the only significant differences were detected when comparing to 4S treatments. Individual growth rate, reproductive output and population growth rate were highest at 4S. At 8S growth and reproduction were reduced as compared to freshwater and 4S. The life history parameters in the performed experiments indicated higher fitness (expressed as r) as well as more favourable conditions for growth and reproduction at 4S, whereas the O/N ratio was more difficult to interpret and, in this case, gave a less clear picture of the salinity influence.  相似文献   
102.
海水盐度对两种红树植物胚轴萌发的影响   总被引:23,自引:0,他引:23       下载免费PDF全文
 对采自广西海岸的木榄(Bruguiera gymnorrhiza)和红海榄(Rhizophora stylosa)胚轴进行品质检测,相关数据可作为该地区胚轴评价的参考指标。不同盐度海水水培和淡水沙培试验的结果表明:较之海水盐度为20‰和30‰的高盐度海水,10‰以下的低盐度海水对木榄胚轴萌根和发芽有明显促进作用,使始萌根日缩短一半时日(6d),平均萌根日数快7.1~4.8d,萌根率提高20%~30%,并且较早开始发芽。红海榄胚轴萌根的最佳盐度条件为20‰左右的高盐度,此时的萌根率和平均萌根率分别达到90%和68%,淡水条件下红海榄的萌根率只有40%。试验还发现木榄胚轴连续萌根率具有双峰值现象,红海榄胚轴顶端的发芽可能会受下胚轴曝光的抑制。  相似文献   
103.
Piriformospora indica association has been reported to increase biotic as well as abiotic stress tolerance of its host plants. We analyzed the beneficial effect of P. indica association on rice seedlings during high salt stress conditions (200 and 300 mM NaCl). The growth parameters of rice seedlings such as root and shoot lengths or fresh and dry weights were found to be enhanced in P. indica-inoculated rice seedlings as compared with non-inoculated control seedlings, irrespective of whether they are exposed to salt stress or not. However, salt-stressed seedlings performed much better in the presence of the fungus compared with non-inoculated control seedlings. The photosynthetic pigment content [chlorophyll (Chl) a, Chl b, and carotenoids] was significantly higher in P. indica-inoculated rice seedlings under high salt stress conditions as compared with salt-treated non-inoculated rice seedlings, in which these pigments were found to be decreased. Proline accumulation was also observed during P. indica colonization, which may help the inoculated plants to become salt tolerant. Taken together, P. indica rescues growth diminution of rice seedlings under salt stress.  相似文献   
104.
Factors influencing species diversity in saline waters of Death Valley,USA   总被引:1,自引:4,他引:1  
Salinity is a major factor influencing the distributions and abundances of aquatic macroinvertebrates of saline waters in Death Valley, California, USA. A general pattern of declining numbers of species with increasing salinity is seen in Death Valley waters. Some species are restricted to low salinities, others are found only in highly saline pools, and still others are widely distributed over a broad range of salinities.Salinity alone cannot explain distributions seen in the field. Distributions and abundances of species such as the caddisfly Limnephilus assimilis Banks are broader than would be predicted on the basis of laboratory studies of salinity and temperature. I present evidence that for such species, biotic factors such as reduced predation at high salinities may compensate for increased physiological stress.  相似文献   
105.
The inward‐rectifying K+ channel AKT1 constitutes an important pathway for K+ acquisition in plant roots. In glycophytes, excessive accumulation of Na+ is accompanied by K+ deficiency under salt stress. However, in the succulent xerophyte Zygophyllum xanthoxylum, which exhibits excellent adaptability to adverse environments, K+ concentration remains at a relatively constant level despite increased levels of Na+ under salinity and drought conditions. In this study, the contribution of ZxAKT1 to maintaining K+ and Na+ homeostasis in Z. xanthoxylum was investigated. Expression of ZxAKT1 rescued the K+‐uptake‐defective phenotype of yeast strain CY162, suppressed the salt‐sensitive phenotype of yeast strain G19, and complemented the low‐K+‐sensitive phenotype of Arabidopsis akt1 mutant, indicating that ZxAKT1 functions as an inward‐rectifying K+ channel. ZxAKT1 was predominantly expressed in roots, and was induced under high concentrations of either KCl or NaCl. By using RNA interference technique, we found that ZxAKT1‐silenced plants exhibited stunted growth compared to wild‐type Z. xanthoxylum. Further experiments showed that ZxAKT1‐silenced plants exhibited a significant decline in net uptake of K+ and Na+, resulting in decreased concentrations of K+ and Na+, as compared to wild‐type Z. xanthoxylum grown under 50 mm NaCl. Compared with wild‐type, the expression levels of genes encoding several transporters/channels related to K+/Na+ homeostasis, including ZxSKOR, ZxNHX, ZxSOS1 and ZxHKT1;1, were reduced in various tissues of a ZxAKT1‐silenced line. These findings suggest that ZxAKT1 not only plays a crucial role in K+ uptake but also functions in modulating Na+ uptake and transport systems in Z. xanthoxylum, thereby affecting its normal growth.  相似文献   
106.
Intra-specific variations in nonstructural carbohydrates and free proline were determined in leaves, apices, roots, and maturing seeds of two salt-tolerant cultivars (CR and Kharchia-65) and one salt-sensitive cv. Ghods of spring wheat (Triticum aestivum L.) grown in sand culture at various levels of salinity (0, 100, 200, and 300 mM NaCl and CaCl2 at 5 : 1 molar ratio) under controlled environmental conditions. The levels of leaf, apex, and root ethanol-soluble carbohydrates, fructans, starch, and proline increased in line with elevating level of salinity in all three cultivars under investigation. The contents of proline, soluble and insoluble carbohydrates in the apex increased to levels exceeding those in the leaves and roots. Soluble carbohydrate content of salt-sensitive cv. Ghods was higher in the leaves, apices, and roots and lower in the maturing seeds than in the other cultivars at all levels of salinity except at 300 mM. The results show considerable variation in the amount of soluble, insoluble sugars, and proline among plant tissues and wheat genotypes in response to salinity. Higher soluble carbohydrates and fructan in leaves, roots and maturing seeds of stressed plants indicate that their accumulation may help plant to tolerate salinity. Salt-sensitive cv. Ghods accumulated less soluble sugars in the maturing seeds and higher soluble sugars in the apices, which might be used as an indicator in screening wheat genotypes for salinity tolerance.  相似文献   
107.
Cell carbon and nitrogen in D. viridis are strongly dependent on the culturing conditions. Both elements increase with increasing salinity. At 31°C cell carbon is maximum and cell nitrogen minimum. This temperature was described previously (Jiménez, C., Niell, F. X. & Fernandez, J. A. (1990). Hydrobiologia, 197, 165-72) as the optimal one for achieving the maximum oxygen evolution. These results point out a possible competence for the reducing power during carbon and nitrogen assimilation processes, and under conditions of high photosynthesis (carbon assimilation) there is a partial inhibition of nitrate reduction, making C:N ratio maximum under conditions of maximum net photosynthesis.The study of cell glycerol, nitrate, structural proteins and free amino acids indicates that all of these solutes accumulate in the cells as a result of the high salinity adaptation.  相似文献   
108.
In the present study, photosynthetic parameters including gas exchanges, pigment contents, and chlorophyll fluorescence, were compared in two contrasting local Medicago truncatula lines TN6.18 and TN8.20, in response to salt added to the nutrient solution. Plants were cultivated under symbiotic nitrogen fixation (SNF) after inoculation with a reference strain Sinorhizobium meliloti 2011, a very tolerant strain to salinity (700 mM NaCl), and grown in a controlled glasshouse. On one month old plants (with active SNF), salt treatment (75 mM NaCl) was gradually applied. Photosynthesis, assimilating pigments and chlorophyll fluorescence were monitored throughout the experiment during both short and long terms, compared to control (non-saline) conditions. A genotypic variation in salt tolerance was found; TN6.18 was the more sensitive to salinity. The relative tolerance of TN8.20 was concomitant with the highest photochemical quenching coefficient (qP) affecting the maximum quantum yield of PSII (Y); the real quantum yield (?exc) was the most affected in the sensitive line. Moreover, stomatal and PSII reaction centers activities differed clearly between the studied lines. We found that the effect of salinity on photosynthesis of M. truncatula was related to PSII activity reduction rather than to stomatal conductance limitation. Photosynthesis was reduced by the inhibition of CO2 assimilation caused by PSII damage. This was clearly estimated by the Y, ?exc and especially by the quantum yield of electron transport of PSII (ΦPSII). Thus, on the basis of our results on the two local M. truncatula lines, we recommend the use of chlorophyll fluorescence as non-destructive screening method to discriminate susceptible and resistant legumes to salt stress.  相似文献   
109.
This study reports the effect of salinity and inoculation on growth, ion uptake and nitrogen fixation byVigna radiata. A soil ECe level of 7.5 dS m−1 was quite detrimental causing about 60% decline in dry matter and grain yield of mungbean plants whereas a soil ECe level of 10.0 dS m−1 was almost toxic. In contrast most of the studied strains of Rhizobium were salt tolerant. Nevertheless, nodulation, nitrogen fixation and total nitrogen concentration in the plant was drastically affected at high salt concentration. A noticeable decline in acetylene reduction activity occurred when salinity level increased to 7.5 dS m−1.  相似文献   
110.
Effects and interactions of varying CaSO4 and NaCl levels on growth and nitrogen fixation ofLeucaena leucocephala K8 were examined. Leucaena was grown in nutrient solution at four levels of CaSO4 (0.5, 1.0, 2.5 and 5.0 mM) and NaCl (1, 25, 50 and 100 mM) in randomized blocks with five replications. While NaCl significantly reduced plant growth, additions of CaSO4 increased plant height, leaf number, and biomass of salt treated plants. For the nonsaline treatments, high CaSO4 levels slightly depressed growth, which contradicts suggestions that Leucaena has a high calcium requirement. A significant calcium/sodium interaction was not seen for nodule number or weight. Nodule number was significantly depressed by 100 mM NaCl and nodule weight of the salt stressed plants significantly increased as CaSO4 concentration increased from 0.5 to 2.5 mM. Effects of NaCl and CaSO4 on nitrogen content of plant parts were inconclusive. The promotion of Leucaena salinity tolerance by addition of CaSO4 may be attributed to the effect of calcium in maintaing the selective permeability of membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号