首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1536篇
  免费   46篇
  国内免费   98篇
  1680篇
  2023年   30篇
  2022年   36篇
  2021年   38篇
  2020年   39篇
  2019年   33篇
  2018年   55篇
  2017年   28篇
  2016年   33篇
  2015年   40篇
  2014年   80篇
  2013年   171篇
  2012年   55篇
  2011年   82篇
  2010年   56篇
  2009年   77篇
  2008年   110篇
  2007年   91篇
  2006年   91篇
  2005年   84篇
  2004年   75篇
  2003年   50篇
  2002年   44篇
  2001年   29篇
  2000年   16篇
  1999年   21篇
  1998年   8篇
  1997年   18篇
  1996年   12篇
  1995年   9篇
  1994年   24篇
  1993年   16篇
  1992年   15篇
  1991年   7篇
  1990年   8篇
  1989年   4篇
  1988年   10篇
  1987年   5篇
  1986年   5篇
  1985年   12篇
  1984年   9篇
  1983年   9篇
  1982年   8篇
  1981年   5篇
  1980年   8篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1974年   5篇
  1973年   2篇
排序方式: 共有1680条查询结果,搜索用时 15 毫秒
71.
To visualize fatty acid amide hydrolase (FAAH) in brain in vivo, we developed a novel positron emission tomography (PET) ligand N-(3,4-dimethylisoxazol-5-yl)piperazine-4-[4-(2-fluoro-4-[11C]methylphenyl)thiazol-2-yl]-1-carboxamide ([11C]DFMC, [11C]1). DFMC (1) was shown to have high binding affinity (IC50: 6.1 nM) for FAAH. [11C]1 was synthesized by C11C coupling reaction of arylboronic ester 2 with [11C]methyl iodide in the presence of Pd catalyst. At the end of synthesis, [11C]1 was obtained with a radiochemical yield of 20 ± 10% (based on [11C]CO2, decay-corrected, n = 5) and specific activity of 48–166 GBq/μmol. After the injection of [11C]1 in mice, high uptake of radioactivity (>2% ID/g) was distributed in the lung, liver, kidney, and brain, organs with high FAAH expression. PET images of rat brains for [11C]1 revealed high uptakes in the cerebellar nucleus (SUV = 2.4) and frontal cortex (SUV = 2.0), two known brain regions with high FAAH expression. Pretreatment with the FAAH-selective inhibitor URB597 reduced the brain uptake. Higher than 90% of the total radioactivity in the rat brain was irreversible at 30 min after the radioligand injection. The present results indicate that [11C]1 is a promising PET ligand for imaging of FAAH in living brain.  相似文献   
72.
73.
Production and secretion of a 28,172 Da hydrolase from Thermobifida fusca (TFH) in Bacillus megaterium MS941 and WH323 was investigated in shake flask and pH controlled bioreactors. Successful production of heterologous TFH was achieved by adapting the original tfh gene to the optimal codon usage of B. megaterium. A codon adaption index close to one was reached. The codon optimized tfh was cloned into an open reading frame with DNA sequence for the N-terminal signal peptide of B. megaterium lipase A and a C-terminal His(6)-tag, all under the control of a xylose inducible promoter. Successful TFH production and secretion were observed using batch reactor cultivations with complex medium. Expression of the tfh gene from the P(xylA) promoter and secretion of produced TFH were compared in detail to batch reactor cultivations with semi-defined growth medium. For the first time, significant TFH secretion was achieved using a semi-defined medium in glucose limited fed batch cultivations yielding 10-fold higher cell densities compared to LB medium cultivation. Comparable volumetric TFH activities were obtained for both cultivation strategies. Surprisingly, measured specific TFH activities exhibited drastic discrepancies between preparations from LB and semi-defined medium grown B. megaterium. TFH recovery by Ni-chelate affinity chromatography resulted in higher purification factors when LB medium was used. These results indicated that secreted TFH is favorably produced by batch cultures of B. megaterium WH323 in LB medium.  相似文献   
74.
Tham CS  Whitaker J  Luo L  Webb M 《FEBS letters》2007,581(16):2899-2904
Anandamide and other fatty acid amides are metabolised by the enzyme fatty acid amide hydrolase (FAAH), which thereby regulates their endogenous levels. Here we demonstrate that cultured rat cortical microglia express FAAH at low levels. The potent FAAH inhibitor URB597 reduced the LPS stimulated microglial expression of cyclo-oxygenase 2 and inducible nitric oxide, with concomitant attenuation of the release of PGE2 and NO. Additional of supplemental exogenous anandamide did not increase the magnitude of attenuation of mediator release. The effect of URB597 on LPS stimulated PGE2 release was not blocked by selective CB1 or CB2 receptor antagonists.  相似文献   
75.
The white-rot fungus Phanerochaete chrysosporium has two intracellular beta-glucosidases (BGL1A and BGL1B) belonging to glycoside hydrolase (GH) family 1. BGL1B effectively hydrolyzes cellobiose and cellobionolactone, but BGL1A does not. We have determined the crystal structure of BGL1A in substrate-free and gluconolactone complexed forms. The overall structure and the characteristic of subsite -1 (glycone site) were similar to those of other known GH1 enzymes. The loop regions covering on the (beta/alpha)(8) barrel was significantly deviated, and they form a unique subsite +1 (aglycone site) of BGL1A.  相似文献   
76.
77.
78.
79.
A thermostable β-xylosidase gene Tpexyl3 from Thermotoga petrophila DSM 13,995 was cloned and overexpressed by Escherichia coli. Recombinant Tpexyl3 was purified, and its molecular weight was approximately 86.7 kDa. Its optimal activity was exhibited at pH 6.0 and 90 °C. It had broad specificity to xylopyranosyl, arabinopyranosyl, arabinofuranosyl and glucopyranosyl moieties. The β-xylosidase activity of the recombinant Tpexyl3 was 6.81 U/mL in the LB medium and 151.4 U/mL in a 7.5 L bio-reactor. It was applied to transform ginsenoside extract into the pharmacologically active minor ginsenoside 20(S)-Rg3, which was combined with thermostable β-glucosidase Tpebgl3. After transforming under optimal condition, the 20 g/L of ginsenoside extract was transformed into 6.28 g/L of Rg3 within 90 min, with a corresponding molar conversion of 95.0% and Rg3 productivity of 1793.49 mg/L/h, respectively. This study is the highest report of a GH3 family glycosidase with arabinopyranosidase activity and also the first report on the high substrate concentration bioconversion of ginsenoside extract to ginsenoside 20(S)-Rg3 by using two thermostable glycosidases.  相似文献   
80.
Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号