首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   24篇
  国内免费   20篇
  380篇
  2024年   1篇
  2023年   4篇
  2022年   2篇
  2021年   2篇
  2020年   19篇
  2019年   19篇
  2018年   21篇
  2017年   18篇
  2016年   16篇
  2015年   20篇
  2014年   14篇
  2013年   45篇
  2012年   12篇
  2011年   7篇
  2010年   13篇
  2009年   27篇
  2008年   20篇
  2007年   26篇
  2006年   12篇
  2005年   9篇
  2004年   9篇
  2003年   13篇
  2002年   4篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1979年   2篇
  1975年   3篇
  1974年   2篇
排序方式: 共有380条查询结果,搜索用时 0 毫秒
61.
The mammalian gut microbiota is essential in shaping many of its host''s functional attributes. One such microbiota resides in the bovine digestive tract in a compartment termed as the rumen. The rumen microbiota is necessary for the proper physiological development of the rumen and for the animal''s ability to digest and convert plant mass into food products, making it highly significant to humans. The establishment of this microbial population and the changes occurring with the host''s age are important for understanding this key microbial community. Despite its importance, little information about colonization of the microbial populations in newborn animals, and the gradual changes occurring thereafter, exists. Here, we characterized the overall bovine ruminal bacterial populations of five age groups, from 1-day-old calves to 2-year-old cows. We describe the changes occurring in the rumen ecosystem after birth, reflected by a decline in aerobic and facultative anaerobic taxa and an increase in anaerobic ones. Some rumen bacteria that are essential for mature rumen function could be detected as early as 1 day after birth, long before the rumen is active or even before ingestion of plant material occurs. The diversity and within-group similarity increased with age, suggesting a more diverse but homogeneous and specific mature community, compared with the more heterogeneous and less diverse primary community. In addition, a convergence toward a mature bacterial arrangement with age was observed. These findings have also been reported for human gut microbiota, suggesting that similar forces drive the establishment of gut microbiotas in these two distinct mammalian digestive systems.  相似文献   
62.
综述了瘤胃微生物在处理农业残余废物、城市有机垃圾和一些有毒物质方面的研究情况,并对影响其降解的环境条件、工艺条件和反应促进因素做了介绍,认为结合现代厌氧消化技术和瘤胃发酵技术,瘤胃微生物可以在有机废物处理中发挥较大作用.  相似文献   
63.
The in situ degradation of the washout fraction of starch in six feed ingredients (i.e. barley, faba beans, maize, oats, peas and wheat) was studied by using a modified in situ protocol and in vitro measurements. In comparison with the washing machine method, the modified protocol comprises a milder rinsing method to reduce particulate loss during rinsing. The modified method markedly reduced the average washout fraction of starch in these products from 0.333 to 0.042 g/g. Applying the modified rinsing method, the fractional degradation rate (k d) of starch in barley, oats and wheat decreased from on average 0.327 to 0.144 h−1 whereas for faba beans, peas and maize no differences in k d were observed compared with the traditional washing machine rinsing. For barley, maize and wheat, the difference in non-fermented starch in the residue between both rinsing methods during the first 4 h of incubation increased, which indicates secondary particle loss. The average effective degradation of starch decreased from 0.761 to 0.572 g/g when using the new rinsing method and to 0.494 g/g when applying a correction for particulate matter loss during incubation. The in vitro k d of starch in the non-washout fraction did not differ from that in the total product. The calculated ratio between the k d of starch in the washout and non-washout fraction was on average 1.59 and varied between 0.96 for oats and 2.39 for maize. The fractional rate of gas production was significantly different between the total product and the non-washout fraction. For all products, except oats, this rate of gas production was larger for the total product compared with the non-washout fraction whereas for oats the opposite was observed. The rate of increase in gas production was, especially for grains, strongly correlated with the in vitro k d of starch. The results of the present study do not support the assumption used in several feed evaluation systems that the degradation of the washout fraction of starch in the rumen is much faster than that of the non-washout fraction.  相似文献   
64.
Fat coating of soybean meal (SBM) can reduce its protein degradability in the rumen, but the encapsulation of SBM with palmitic (PA) and stearic acids (SA) has not yet been investigated, despite both fatty acids are common energy sources in dairy cow diets. This study aimed to evaluate the effects of applying a novel method, using either 400 or 500 g fat/kg (treatments FL40 and FL50, respectively), which was enriched in PA and SA at different ratios (100:0, 75:25, 50:50, 25:75 and 0:100), on physical and chemical characteristics, ruminal degradability, solubility and in vitro intestinal protein digestibility (IVIPD) of the obtained products. Encapsulation of SBM in fat resulted in greater mean particle size and lower bulk density and protein solubility than unprotected SBM (USBM). Treatment FL50 resulted in increased (p < 0.01) rumen-undegraded protein (RUP) compared to USBM. There were no differences in RUP of SBM when different PA: SA ratios were used. The mean RUP content of treatments FL40 and FL50 (306 and 349 g/kg, respectively) was greater compared to USBM (262 g/kg, p < 0.05), but lower than that for a standard heat-treated SBM (431 g/kg). Values of IVIPD did not differ among SBM, heat-treated SBM and FL40 and FL50 samples, all being greater than 97.8%. In conclusion, encapsulation of SBM with fats enriched in PA and SA proved to be effective in reducing protein solubility and increasing RUP without depressing protein digestibility in the intestine. For validation of the method, in vivo research to investigate the effects of these products on the production of dairy cows is warranted.  相似文献   
65.
The aim of the present experiment was to determine if a niacin supplementation of 6 g/d to lactating dairy cow diets can compensate negative effects of a rumen nitrogen balance (RNB) deficit. A total of nine ruminally and duodenally fistulated lactating multiparous German Holstein cows were successively assigned to one of three diets consisting of 10 kg maize silage (dry matter [DM] basis) and7 kg DM concentrate: Diet RNB– (n = 6) with energy and utilisable crude protein at the duodenum (uCP) according to the average requirement of the animals but with a negative RNB (–0.41 g N/MJ metabolisable energy [ME]); Diet RNB0 (n = 7) with energy, uCP and a RNB (0.08 g N/MJ ME) according to the average requirement of the animals and, finally, Diet NA (n = 5), which was the same diet as RNB–, but supplemented with 6 g niacin/d. Samples of milk were taken on two consecutive days, blood samples were taken on one day pre- and post-feeding and faeces and urine were collected completely over five consecutive days. The negative RNB reduced milk and blood urea content and apparent total tract digestibility of DM, organic matter (OM) and neutral detergent fibre (NDF). Also N excretion with urine, the total N excreted with urine and faeces and the N balance were reduced when the RNB was negative. Supplementation of niacin elevated plasma glucose concentration after feeding and the N balance increased. Supplementing the diet with a negative RNB with niacin led to a more efficient use of dietary N thereby avoiding the negative effects of the negative RNB on the digestibility of DM, OM and NDF.  相似文献   
66.
During a survey of the ciliate protozoal composition of the stomach contents of nine dromedary camels of Egypt, fourteen morphotypes of Entodinium ovumrajae, which has been considered as a species peculiar to camels, were found in six camels. Except for five morphotypes including one originally described as an independent species and its forms, these were newly detected. These morphotypes, divided into three groups, can be identified mainly by the morphology of their ectoplasmic processes. Each camel had on average, about five morphotypes of this species.  相似文献   
67.
Host and dietary interactions with the rumen microbiome can affect the efficacy of supplements, and their effect on the composition of the bacterial population is still unknown. A 16S rRNA metagenomic approach and Next-Generation Sequencing (NGS) technology were used to investigate the bacterial microbiome composition in the liquid fraction of the rumen content collected via stomach tubing. To investigate biodiversity, samples were taken from three groups of four lactating dairy cows given a supplement of either 50 g of potato protein (Ctrl group), or 50 g of lyophilized Saccharomyces cerevisiae (LY group) or 50 g of dried S. cerevisiae (DY group) in a potato protein support. Rumen samples were collected after 15 days of dietary treatments and milk production was similar between the three groups. Taxonomic distribution analysis revealed a prevalence of the Firmicutes phylum in all cows (79.76%) and a significantly (P<0.05) higher presence of the genus Bacillus in the DY group. Volatile fatty-acid concentration was not significantly different between groups, possibly because of relatively high inter-animal variability or limited effect of the treatments or both, and the correlation analysis with bacterial taxa showed significant associations, in particular between many Firmicutes genera and butyrate. Limited differences were observed between dietary treatments, but the lack of microbiome data before yeast administration does not allow to draw firm conclusions on the effect of dietary treatments.  相似文献   
68.
Summary— Arabinoxylans were localised by immunocytochemistry using polyclonal antibodies in the cell walls of the apical internode of maize after degradation in the rumen. In order to understand the significance of arabinoxylan in digestibility property, two lines of maize differing in digestibility were used. Wide variations in the intensity of labelling were observed in the four tissues studied (sclerenchyma, fibres, xylem and parenchyma) from the first hours of incubation in the rumen. Incubation time in the rumen greatly influences the intensity of labelling.  相似文献   
69.
Microbial ecosystem and methanogenesis in ruminants   总被引:1,自引:0,他引:1  
Ruminant production is under increased public scrutiny in terms of the importance of cattle and other ruminants as major producers of the greenhouse gas methane. Methanogenesis is performed by methanogenic archaea, a specialised group of microbes present in several anaerobic environments including the rumen. In the rumen, methanogens utilise predominantly H2 and CO2 as substrates to produce methane, filling an important functional niche in the ecosystem. However, in addition to methanogens, other microbes also have an influence on methane production either because they are involved in hydrogen (H2) metabolism or because they affect the numbers of methanogens or other members of the microbiota. This study explores the relationship between some of these microbes and methanogenesis and highlights some functional groups that could play a role in decreasing methane emissions. Dihydrogen ('H2' from this point on) is the key element that drives methane production in the rumen. Among H2 producers, protozoa have a prominent position, which is strengthened by their close physical association with methanogens, which favours H2 transfer from one to the other. A strong positive interaction was found between protozoal numbers and methane emissions, and because this group is possibly not essential for rumen function, protozoa might be a target for methane mitigation. An important function that is associated with production of H2 is the degradation of fibrous plant material. However, not all members of the rumen fibrolytic community produce H2. Increasing the proportion of non-H2 producing fibrolytic microorganisms might decrease methane production without affecting forage degradability. Alternative pathways that use electron acceptors other than CO2 to oxidise H2 also exist in the rumen. Bacteria with this type of metabolism normally occupy a distinct ecological niche and are not dominant members of the microbiota; however, their numbers can increase if the right potential electron acceptor is present in the diet. Nitrate is an alternative electron sinks that can promote the growth of particular bacteria able to compete with methanogens. Because of the toxicity of the intermediate product, nitrite, the use of nitrate has not been fully explored, but in adapted animals, nitrite does not accumulate and nitrate supplementation may be an alternative under some dietary conditions that deserves to be further studied. In conclusion, methanogens in the rumen co-exist with other microbes, which have contrasting activities. A better understanding of these populations and the pathways that compete with methanogenesis may provide novel targets for emissions abatement in ruminant production.  相似文献   
70.
Lack of synchronization between N released from prunings applied to the soil as green manures and crop uptake as well as optimization of protein digestibility for ruminants, remain major research objectives for the selection of multipurpose tree and shrub legumes (MPT) for mixed smallholder systems in the tropics. Prunings of the high tannin, low quality MPT Calliandra houstoniana CIAT 20400 (Calliandra) and the tannin free, high quality MPT Indigofera zollingeriana (Indigofera) were mixed in the proportions 100:0, 75:25, 50:50, 25:75, and 0:100 (w/w) in order to measure the aerobic rate and extent of N release in a leaching tube experiment, and the anaerobic extent of N degradation in an in vitro gas production experiment. Parameters measured in Calliandra:Indigofera mixtures were compared to theoretical values derived from single species plant material (i.e. 100:0 and 0:100). Aerobic N release and apparent anaerobic N degradation increased with increasing proportion of the high quality legume (Indigofera) in the mixture. While N release in the soil was lower than theoretical values in the mixture 50% Calliandra/50% Indigofera, this was not the case with apparent anaerobic N degradation with the same mixture. Aerobic N immobilization was more pronounced for the mixture 75% Calliandra/25% Indigofera than for 100% Calliandra and negative interaction was observed with apparent anaerobic N degradation in the mixture 75% Calliandra/25% Indigofera. Plant quality parameters that best correlated with aerobic N release and apparent anaerobic N degradation in the rumen were lignin + bound condensed tannins (r=−0.95 and −0.95 respectively, P<0.001). In addition, a positive correlation (r=0.89, P<0.001) was found between aerobic N release in the leaching tube experiment and apparent N degradation in the in vitro anaerobic gas production experiment. Results show that mixing prunings of MPT materials with contrasting quality is an effective way to modify aerobic N release pattern as well as apparent anaerobic N degradation and could possibly be applied to minimize N losses in the rumen and in the soil. In addition, apparent anaerobic N degradation was identified as good predictor of aerobic N release in the soil, which has resource saving implications when screening MTP to be used as green manures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号