首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137635篇
  免费   7435篇
  国内免费   10299篇
  2023年   1340篇
  2022年   1897篇
  2021年   2775篇
  2020年   2765篇
  2019年   4377篇
  2018年   3408篇
  2017年   2724篇
  2016年   3219篇
  2015年   4738篇
  2014年   6728篇
  2013年   9259篇
  2012年   5501篇
  2011年   7599篇
  2010年   5717篇
  2009年   6529篇
  2008年   6959篇
  2007年   7286篇
  2006年   6749篇
  2005年   6175篇
  2004年   5373篇
  2003年   4812篇
  2002年   4321篇
  2001年   3233篇
  2000年   2892篇
  1999年   2935篇
  1998年   2817篇
  1997年   2415篇
  1996年   2089篇
  1995年   2384篇
  1994年   2248篇
  1993年   2119篇
  1992年   1993篇
  1991年   1570篇
  1990年   1449篇
  1989年   1297篇
  1988年   1310篇
  1987年   1233篇
  1986年   909篇
  1985年   1379篇
  1984年   1891篇
  1983年   1258篇
  1982年   1625篇
  1981年   1144篇
  1980年   1141篇
  1979年   1045篇
  1978年   609篇
  1977年   481篇
  1976年   409篇
  1975年   304篇
  1973年   296篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
131.
Identifying protein–protein and other proximal interactions is central to dissecting signaling and regulatory processes in cells. BioID is a proximity-dependent biotinylation method that uses an “abortive” biotin ligase to detect proximal interactions in cells in a highly reproducible manner. Recent advancements in proximity-dependent biotinylation tools have improved efficiency and timing of labeling, allowing for measurement of interactions on a cellular timescale. However, issues of size, stability, and background labeling of these constructs persist. Here we modified the structure of BioID2, derived from Aquifex aeolicus BirA, to create a smaller, highly active, biotin ligase that we named MicroID2. Truncation of the C terrminus of BioID2 and addition of mutations to alleviate blockage of biotin/ATP binding at the active site of BioID2 resulted in a smaller and highly active construct with lower background labeling. Several additional point mutations improved the function of our modified MicroID2 construct compared with BioID2 and other biotin ligases, including TurboID and miniTurbo. MicroID2 is the smallest biotin ligase reported so far (180 amino acids [AAs] for MicroID2 versus 257 AAs for miniTurbo and 338 AAs for TurboID), yet it demonstrates only slightly less labeling activity than TurboID and outperforms miniTurbo. MicroID2 also had lower background labeling than TurboID. For experiments where precise temporal control of labeling is essential, we in addition developed a MicroID2 mutant, termed lbMicroID2 (low background MicroID2), that has lower labeling efficiency but significantly reduced biotin scavenging compared with BioID2. Finally, we demonstrate utility of MicroID2 in mass spectrometry experiments by localizing MicroID2 constructs to subcellular organelles and measuring proximal interactions.  相似文献   
132.
ABSTRACT. A non-dispersive infrared gas analyser equipped with a Luft-type sonic detector and flow-through reference cell was automated to monitor the total volume of carbon dioxide (CO2) respired by single insects or groups of insects. The infrared analyser was interfaced with an integrator for quantification, a microprocessor to control intermittent air flow through the insect respiration chambers, and a microcomputer for data storage and reduction. This technique has been used to monitor the CO2 Output of diapausing and non-diapausing mature fifth instar larvae and of developing pupae of the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). The resulting data were accurate, quantitative and reproducible.  相似文献   
133.
The subcellular localization of the ω-hydroxylase of Saccharomycopsis lipolytica was assessed by the analytical fractionation technique, originally described by de Duve C., Pressman, B.C., Gianetto, R., Wattiaux, R. and Appelmans, F., and hitherto little, if at all, applied to yeast. Protoplasts were separated in six fractions by differential centrifugation. Some of these fractions were further fractioned by density gradient centrifugation. The distribution of ω-hydroxylase and 15 other constituents chosen as possible markers of its subcellular membranes has been established. ω-Hydroxylase resulted in being bound to a membrane that containes also cytochrome P-450 and NADPH-cytochrome c reductase. This membrane clearly differs from five other subcellular entities. (1) Mitochondria were characterized by particulate malate dehydrogenase, particulate Antimycin A-insensitive NADH-cytochrome c reductase, oligomycin-sensitive and K+-stimulated ATPase pH 9. (2) Most if not all of the catalase and urate oxidase is peroxisomal. (3) Free ribosomes account for most RNA. (4) Nucleoside diphosphatase is for the first time reported in a yeast and appears to belong to an homogeneous population of small membranes. (5) The soluble compartment contains magnesium pyrophosphatase, alkaline phosphatase, 5′-nucleotidase and part of the NADH-cytochrome c reductase. Latent arylesterase and ATPase pH7 have an unspecific distribution. Alkaline phosphodiesterase I has not been detected.  相似文献   
134.
A new method for the analysis of NMR data in terms of the solution structure of proteins has been developed. The method consists of two steps: first a systematic search of the conformational space to define the region allowed by the initial set of experimental constraints, and second, the narrowing of this region by the introduction of additional constraints and optional refinement procedures. The search of the conformational space is guided by heuristics to make it computationally feasible. The method is therefore called the heuristic refinement method and is coded in an expert system called PROTEAN. The paper describes the validation of the first step of the method using an artificial NMR data set generated from the known crystal structure of sperm whale carbon monoxymyoglobin. It is shown that the initial search procedure yields a low-resolution structure of the myoglobin molecule, accurately reproducing its main topological features, and that the precision of the structure depends on the quality of the initial data set.  相似文献   
135.
136.
137.
Insulin stimulated autophosphorylation of the beta-subunit of the insulin receptor purified from Fao hepatoma cells or purified from Chinese hamster ovary (CHO/HIRC) or Swiss 3T3 (3T3/HIRC) cells transfected with the wild-type human insulin receptor cDNA. Autophosphorylation of the purified receptor occurred in at least two regions of the beta-subunit: the regulatory region containing Tyr-1146, Tyr-1150, and Tyr-1151, and the C-terminus containing Tyr-1316 and Tyr-1322. In the presence of antiphosphotyrosine antibody (alpha-PY), autophosphorylation of the purified receptor was inhibited nearly 80% during insulin stimulation. Tryptic peptide mapping showed that alpha-PY inhibited autophosphorylation of both tyrosyl residues in the C-terminus and one tyrosyl residue in the regulatory region, either Tyr-1150 or Tyr-1151. Thus, a bis-phosphorylated form of the regulatory region accumulated in the presence of alpha-PY, which contained Tyr(P)-1146 and either Tyr(P)-1150 or 1151. In intact Fao, CHO/HIRC, and 3T3/HIRC cells, insulin stimulated tyrosyl phosphorylation of the beta-subunit of the insulin receptor. Tryptic peptide mapping indicated that the regulatory region of the beta-subunit was mainly (greater than 80%) bis-phosphorylated; however, all three tyrosyl residues of the regulatory region were phosphorylated in about 20% of the receptors. As the phosphotransferase was activated by tris-phosphorylation but not bis-phosphorylation of the regulatory region of the beta-subunit (White et al.: Journal of Biological Chemistry 263:2969-2980, 1988), the extent of autophosphorylation in the regulatory region may play an important regulatory role during signal transmission in the intact cell.  相似文献   
138.
139.
Melanopsins play a key role in non-visual photoreception in mammals. Their close phylogenetic relationship to the photopigments in invertebrate visual cells suggests they have evolved to acquire molecular characteristics that are more suited for their non-visual functions. Here we set out to identify such characteristics by comparing the molecular properties of mammalian melanopsin to those of invertebrate melanopsin and visual pigment. Our data show that the Schiff base linking the chromophore retinal to the protein is more susceptive to spontaneous cleavage in mammalian melanopsins. We also find this stability is highly diversified between mammalian species, being particularly unstable for human melanopsin. Through mutagenesis analyses, we find that this diversified stability is mainly due to parallel amino acid substitutions in extracellular regions. We propose that the different stability of the retinal attachment in melanopsins may contribute to functional tuning of non-visual photoreception in mammals.  相似文献   
140.
We isolated a Zea mays cDNA encoding the 40S subunit cytoplasmic ribosomal protein S11. The nucleotide sequence was determined and the derived amino acid sequence compared to the corresponding Arabidopsis thaliana protein showing an homology of 90%. This ribosomal protein is encoded by a small multigene family of at least two members. The mRNA steady-state level is about one order of magnitude higher in rapidly growing parts of the plant such as the roots and shoots of seedlings compared to fully expanded leaf tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号