首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1256篇
  免费   101篇
  国内免费   82篇
  1439篇
  2024年   1篇
  2023年   11篇
  2022年   10篇
  2021年   15篇
  2020年   33篇
  2019年   40篇
  2018年   30篇
  2017年   34篇
  2016年   34篇
  2015年   30篇
  2014年   54篇
  2013年   89篇
  2012年   46篇
  2011年   96篇
  2010年   50篇
  2009年   105篇
  2008年   69篇
  2007年   59篇
  2006年   69篇
  2005年   82篇
  2004年   59篇
  2003年   69篇
  2002年   56篇
  2001年   54篇
  2000年   38篇
  1999年   33篇
  1998年   19篇
  1997年   11篇
  1996年   14篇
  1995年   25篇
  1994年   30篇
  1993年   25篇
  1992年   14篇
  1991年   22篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
排序方式: 共有1439条查询结果,搜索用时 15 毫秒
931.
This study reported that Babesia bigemina (Bbig-SF) was continuously cultured in vitro in a serum-free medium supplemented with a mixture of insulin-transferrin-selenite (M-ITS) and putrescine (Pu). Firstly, the effect of five different types of basal culture media supplemented with 40% bovine serum was evaluated regarding the proliferation of the protozoan parasite. Cultures with the advanced DMEM/F12 medium (A-DMEM/F12) showed the highest percentage of parasitized erythrocytes (PPE) at 8.37%. Using A-DMEM/F12, a strain of B. bigemina (Bbig-SF) was adapted for growth in bovine serum-free medium by a sequential reduction of serum and demonstrated a maximum PPE of 7.18% in the absence of serum. The next study was the evaluation of the effect of adding four different concentrations of M-ITS to the serum-free A-DMEM/F12 medium on Bbig-SF; the optimal concentrations of M-ITS were 2000, 1100, and 1.34 mg/L, which yielded a PPE of 7.23%. Next, eight levels of Pu were evaluated on Bbig-SF cultured in serum-free A-DMEM/F12. After the addition of 0.1012 mg/L of Pu, the maximum PPE was 7.61%. When the combination of serum-free A-DMEM/F12 + M-ITS (2000, 1100, and 1.34 mg/L) + Pu (0.1012 mg/L) was evaluated, it yielded a maximum PPE of 14.80%. Finally, the combination of M-ITS + Pu in A-DMEM/F12 without serum and incorporation of a perfusion bioreactor yielded a maximum PPE of 33.45%. We concluded these culturing innovations for B. bigemina in vitro allow the optimization of small- and large-scale proliferation as a source of this protozoan parasite for future studies.  相似文献   
932.
The scope of this study is to evaluate the performance of internal loop airlift bioreactor (ILALR) in treating synthetic wastewater containing phenol and m-cresol, in single and multi component systems. The microbe utilized in the process was an indigenous mixed strain of Pseudomonas sp. isolated from a wastewater treatment plant. The reactor was operated at both lower and higher hydraulic retention times (HRTs) i.e., 4.1 and 8.3 h, respectively, by providing an inlet feed flow rate of 5 and 10 mL/min. Shock loading experiments were also performed up to a maximum concentration of 800 mg/L for phenol at 8.3 h HRT and 500 mg/L for m-cresol at 4.1 h HRT. The study showed complete degradation of both phenol and m-cresol, when they were degraded individually at a HRT of 8.3 h. Experiments with both phenol and m-cresol present as mixtures were performed based on the 22 full factorial design of experiments.  相似文献   
933.
934.
It is an important and desirable capability to be able to control the quality and quantity of biological product by maintaining and adjusting bioreactor performance throughout its production duration. Amino acids are the building blocks of proteins. Scientists will need to ensure sufficient supply of amino acids as the substrates in the bioreactors as well as to control the excess level of undesirable free amino acid byproducts to maintain an optimum growth environment for cell culture. We have developed a compact and robust sample preparation platform capable of interfacing with analytical instruments to achieve bioreactor amino acids monitoring. We demonstrated the feasibility of this concept by incorporating an automatic amino acid sample preparation protocol to a micro sequential injection (μSI) system connected to an ultra‐performance liquid chromatography system for real‐time, at‐line amino acid separation, and quantitation. The μSI system was configured into a “platform‐like” sample preparation system that is able to accommodate future wet chemistry‐type sample preparations. Its real‐time amino acid results can be readily available to bioprocess scientists for quick decision making and design of their next experiment. Potential automatic feedback control mechanisms can be established through trigger events based on predetermined analytical signal thresholds so the system can communicate with facility infrastructure to control bioreactors in near real‐time fashion. The proposed μSI system described in this paper can be widely used as an automatic sample preparation system connected to the front‐end of analytical instruments to enable process analytical technology applications. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:607–613, 2015  相似文献   
935.
Behavioural avoidance responses of red drum (Sciaenops ocellatus) to aquatic hypoxia were investigated at 22 and 30°C using a modified shuttlebox system. Fish movement between a control side maintained at normoxia and a hypoxic side with stepwise decreasing water oxygen tension was analysed for entries into the hypoxic side, residence time per entry into the hypoxic side and total time in the hypoxic side. Acclimation to 30°C increased the oxygen threshold for the onset of hypoxia avoidance behaviours for entries and total time, while residence time per entry was unchanged.  相似文献   
936.
Strategies for the production of pluripotent stem cells (PSCs) rely on serially dissociated adherent or aggregate‐based culture, consequently limiting robust scale‐up of cell production, on‐line control and optimization of culture conditions. We recently developed a method that enables continuous (non‐serially dissociated) suspension culture‐mediated reprogramming to pluripotency. Herein, we use this method to demonstrate the scalable production of PSCs and early derivatives using acoustic filter technology to enable continuous oxygen‐controlled perfusion culture. Cell densities of greater than 1 × 107 cells/mL were achieved after 7 days of expansion at a specific growth rate (µ) of 0.61 ± 0.1 day?1 with a perfusion rate (D) of 5.0 day?1. A twofold increase in maximum cell density (to greater than 2.5 × 107 cells/mL) was achieved when the medium dissolved oxygen was reduced (5% DO). Cell densities and viabilities >80% were maintained for extended production periods during which maintenance of pluripotency was confirmed by stable expression of pluripotency factors (SSEA‐1 and Nanog), as well as the capacity to differentiate into all three germ layers. This work establishes a versatile biotechnological platform for the production of pluripotent cells and derivatives in an integrated, scalable and intensified stirred suspension culture. Biotechnol. Bioeng. 2013; 110: 648–655. © 2012 Wiley Periodicals, Inc.  相似文献   
937.
Benzaldehyde, with its apricot and almond‐like aroma, is the second most abundantly used molecule in the flavor industry, and is most commonly produced via chemical routes, such as by the oxidation of toluene. Biologically produced benzaldehyde, whether by extraction of plant material or via microbial biotransformation, commands a substantial price advantage, and greater consumer acceptance. Methylotrophic yeast, such as Pichia pastoris, contain the enzyme alcohol oxidase (AOX), which, in the presence of alcohols other than methanol, are able to yield aldehydes as dead‐end products, for example, benzaldehyde from benzyl alcohol. In this work, we have determined that benzaldehyde, and not benzyl alcohol, is inhibitory to the transformation reaction by P. pastoris, prompting the development of a selection strategy for identifying sequestering polymers for use in a partitioning bioreactor that was based on the ratio of partition coefficients (PCs) for the two target molecules. Additionally, we have now confirmed for the first time, that the mechanism of solute uptake by amorphous polymers is via absorption, not adsorption. Finally, we have adopted a common strategy used for the production of heterologous proteins by P. pastoris, namely the use of a mixed methanol/glycerol feed for inducing the required AOX enzyme, while reducing the time required for high density biomass generation. All of these components were combined in a final experiment in which 10% of the polymer Kraton D1102K, whose PC ratio of benzaldehyde to benzyl alcohol was 14.9, was used to detoxify the biotransformation in a 5 L partitioning bioreactor, resulting in a 3.4‐fold increase in benzaldehyde produced (14.4 g vs. 4.2 g) relative to single phase operation, at more than double the volumetric productivity (97 mg L?1 h?1 vs. 41 mg L?1 h?1). Biotechnol. Bioeng. 2013; 110: 1098–1105. © 2012 Wiley Periodicals, Inc.  相似文献   
938.
Pluripotent embryonic stem cells (ESCs) are a potential source for cell‐based tissue engineering and regenerative medicine applications, but their translation into clinical use will require efficient and robust methods for promoting differentiation. Fluid shear stress, which can be readily incorporated into scalable bioreactors, may be one solution for promoting endothelial and hematopoietic phenotypes from ESCs. Here we applied laminar shear stress to differentiating ESCs using a 2D adherent parallel plate configuration to systematically investigate the effects of several mechanical parameters. Treatment similarly promoted endothelial and hematopoietic differentiation for shear stress magnitudes ranging from 1.5 to 15 dyne/cm2 and for cells seeded on collagen‐, fibronectin‐ or laminin‐coated surfaces. Extension of the treatment duration consistently induced an endothelial response, but application at later stages of differentiation was less effective at promoting hematopoietic phenotypes. Furthermore, inhibition of the FLK1 protein (a VEGF receptor) neutralized the effects of shear stress, implicating the membrane protein as a critical mediator of both endothelial and hematopoietic differentiation by applied shear. Using a systematic approach, studies such as these help elucidate the mechanisms involved in force‐mediated stem cell differentiation and inform scalable bioprocesses for cellular therapies. Biotechnol. Bioeng. 2013; 110: 1231–1242. © 2012 Wiley Periodicals, Inc.  相似文献   
939.
Abstract

A three-level Box–Behnken factorial design combined with response surface methodology (RSM) was applied as a tool to study the laccase-catalyzed removal of three estrogenic compounds: estrone (E1), estradiol (E2), and ethinylestradiol (EE2), in a continuous enzymatic membrane reactor (EMR). Three main factors affecting the treatment efficiency were considered: enzyme activity, hydraulic residence time (HRT) and oxygenation rate. As expected, laccase activity and HRT showed large effects and, interestingly, the relevance of oxygen in improving the oxidation kinetics through raising the dissolved oxygen above saturation levels was demonstrated. When considering elimination rates as the response, optimal conditions were: 1,000 U/L of laccase, 1 h HRT and 60 mgO2/(L·h) of oxygenation rate, predicting 2.82–3.24 mg eliminated/(L·h), (71–81% of oxidation). These optimum conditions were successfully validated, and 75% of estrogenicity reduction was achieved. On the other hand, only 100 U/L were found as optimal to maximize the efficacy of the enzyme: E1 was oxidized by 0.06 mg/(L·h·U), although the removal of estrogenicity decreased to 60%. The methodology was also applied to maximize the reduction of estrogenic activity: the highest values assayed [1,000 U/L, HRT 4 h and 60 mgO2/(L·h)] provided 99% detoxification.  相似文献   
940.
Glucoamylase was produced extracellularly by fermentation of strain Aspergillus awamori, which had been genetically modified to have high-level glucoamylase activity. Initial experiments showed that the enzyme deactivated quickly, with a half-life of less than 6 days even stored at 5°C. A possible reason for the rapid deactivation was the presence of proteases, attacking and degrading the glucoamylase. Therefore a liquid protease inhibitor cocktail (Sigma, USA) was selected and applied to enhance the stability of the enzyme. The activity of the enzyme (stored at 5°C) measured by the Schoorl-method with starch as substrate showed that the cocktail was effective with the enzyme maintaining 95% of its initial storage activity for almost one year. The enzyme preparation has been used for starch hydrolysis in a flat-sheet membrane bioreactor at 60°C to manufacture glucose solution and its operation stability extended by using the cocktail.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号