首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1259篇
  免费   98篇
  国内免费   82篇
  2024年   1篇
  2023年   11篇
  2022年   10篇
  2021年   15篇
  2020年   33篇
  2019年   40篇
  2018年   30篇
  2017年   34篇
  2016年   34篇
  2015年   30篇
  2014年   54篇
  2013年   89篇
  2012年   46篇
  2011年   96篇
  2010年   50篇
  2009年   105篇
  2008年   69篇
  2007年   59篇
  2006年   69篇
  2005年   82篇
  2004年   59篇
  2003年   69篇
  2002年   56篇
  2001年   54篇
  2000年   38篇
  1999年   33篇
  1998年   19篇
  1997年   11篇
  1996年   14篇
  1995年   25篇
  1994年   30篇
  1993年   25篇
  1992年   14篇
  1991年   22篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
排序方式: 共有1439条查询结果,搜索用时 15 毫秒
101.
In the soil remediation process, the hydrophobic characteristics of pollutants and their affinity for soil matrix may be responsible for mass transfer limitations. The degradation of hexachlorocyclohexane (HCH) isomers present in a spiked soil by the white-rot Bjerkandera adusta was evaluated in a slurry system. Experiments in shaken flasks were performed to evaluate the action of the endogenous microflora, the adsorption of HCH on the fungal biomass and the potential synergic or antagonic actions between the microflora and the fungal biomass. The fungus significantly degraded the HCH isomers from the soil slurry in the following order: αγ>δ>β-HCH. The degradation process was further scaled in a 5-l reactor, where the solid load and concentration of the pollutant in the soil were evaluated. At optimal conditions, 100 g soil l−1 and 100 mg total HCH l−1, maximal degradations of 94.5%, 78.5% and 66.1% were attained after 30 d for γ-, α- and δ-HCH isomers, respectively, representing between 1.7 and 3.1-fold the values obtained at small scale. These results indicate that minimising mass transfer resistances is a key factor for HCH degradation from soil.  相似文献   
102.
AIMS: Characterization of beta-glucan production from Botryosphaeria rhodina DABAC-P82 by detecting simultaneously glucan-hydrolytic enzymes and their localization, culture medium rheology and oxygen transfer. METHODS AND RESULTS: Mycelium growth, beta-glucan production, substrate consumption and glucan-hydrolytic enzymes were monitored both in shaken flasks and in a 3-l stirred-tank bioreactor. Glucan production (19.7 and 15.2 g l(-1), in flask and bioreactor, respectively) was accompanied by extra-cellular and cell-bound beta-glucanase and beta-glucosidase activities. In the bioreactor scale, in the time interval of 0-78 h the apparent viscosity of the culture broth exhibited a general increase; thereafter, it began to reduce, probably because of the above glucan-hydrolytic activities. Moreover, the culture media collected after 45 h behaved as solid-like materials at shear rates smaller than 0.001 s(-1), as pseudo-plastic liquids in the middle shear rate range and as Newtonian ones at shear rates greater than 1000 s(-1). CONCLUSION: The greatest beta-glucan accumulation in the bioreactor was found to be associated with nitrogen and dissolved oxygen concentrations smaller than 0.15 g l(-1) and 25%, respectively, and with the peak points of the glucan-degrading enzymes. SIGNIFICANCE AND IMPACT OF THE STUDY: A careful analysis of the critical factors (such as, culture broth rheology, oxygen mass transfer and glucan-hydrolytic enzymes) limiting the beta-glucan production by B. rhodina is a prerequisite to maximize beta-glucan yield and production, as well as to define the process flow sheet capable of maximizing biopolymer recovery, solvent re-utilization and glucose consumption.  相似文献   
103.
104.
105.
106.
Feng X  Chen F  Xu H  Wu B  Li H  Li S  Ouyang P 《Bioresource technology》2011,102(10):6141-6146
Propionic acid production by Propionibacterium freudenreichii from molasses and waste propionibacterium cells was studied in plant fibrous-bed bioreactor (PFB). With non-treated molasses as carbon source, 12.69 ± 0.40 g l-1 of propionic acid was attained at 120 h in free-cell fermentation, whereas the PFB fermentation yielded 41.22 ± 2.06 g l-1 at 120 h and faster cells growth was observed. In order to optimize the fermentation outcomes, fed-batch fermentation was performed with hydrolyzed molasses in PFB, giving 91.89 ± 4.59 g l-1 of propionic acid at 254 h. Further studies were carried out using hydrolyzed waste propionibacterium cells as substitute nitrogen source, resulting in a propionic acid concentration of 79.81 ± 3.99 g l-1 at 302 h. The present study suggests that the low-cost molasses and waste propionibacterium cells can be utilized for the green and economical production of propionic acid by P. freudenreichii.  相似文献   
107.
The main objective of this work was to determine the effectiveness of various biofouling reducers (BFRs) to operational condition in hybrid membrane bioreactor (MBR) of palm oil mill effluent (POME). A series of tests involving three bench scale (100 L) hybrid MBR were operated at sludge retention times (SRTs) of 30 days with biofouling reducer (BFR). Three different biofouling reducers (BFRs) were powdered actived carbon (PAC), zeolite (Ze), and Moringa oleifera (Mo) with doses of 4, 8 and 12 g L−1 respectively were used. Short-term filtration trials and critical flux tests were conducted. Results showed that, all BFRs successfully removed soluble microbial products (SMP), for PAC, Ze, and Mo at 58%, 42%, and 48%, respectively. At their optimum dosages, PAC provided above 70% reductions and 85% in fouling rates during the short-term filtration and critical flux tests.  相似文献   
108.
Xu Y  Zhong JJ 《Bioresource technology》2011,102(19):9167-9174
A new agricultural antibiotic, 2-heptyl-5-hexylfuran-3-carboxylic acid (HHCA), was recently discovered, but its further application was limited due to its low production titer. In shake flask fermentation, the effect of initial K(L)a within the range of 2.12-18.87 h?1 on HHCA production was investigated. The cell growth and glycerol consumption were faster at a higher initial K(L)a value, but the maximum production (14.43 mg/L) was attained at an initial K(L)a value of 12.46 h?1. The oxygen supply information was further applied to a 2-L bubble column bioreactor (BCB) by varying initial K(L)a from 1.45 to 30.18 h?1, and the hyperproduction of HHCA was achieved at a relatively low initial K(L)a around 5-10 h?1. The control of oxygen supply is considered to be an important strategy to enhance HHCA production, and the information obtained will be useful to production of this powerful new antibiotic on a large scale.  相似文献   
109.
The in vivo biodegradation of the diazo dye Reactive Black 5 (RB5) by Phanerochaete chrysosporium immobilised on cubes of nylon sponge and on sunflower-seed shells (SS) in laboratory-scale bioreactors was investigated. The SS cultivation led to the best results with a decolouration percentage of 90.3% in 72 h for an initial RB5 concentration of 100 mg/L. It was found that the addition of 0.4 mM veratryl alcohol (VA) into the medium considerably increased the decolouration rate in SS cultivation. However, the addition of VA had no effect in the nylon cultivation. Thin layer chromatography (TLC) revealed that RB5 was transformed into one metabolite after 24 h. UV-vis spectroscopy and Fourier Transform Infrared (FT-IR) also confirmed the biodegradation of RB5. Toxicity of RB5 solutions before and after fungal treatment was assayed using Sinorhizobium meliloti as a sensitive soil microorganism. P. chrysosporium transformed the toxic dye RB5 into a non-toxic product.  相似文献   
110.
Yang XL  Song HL  Chen M  Cheng B 《Bioresource technology》2011,102(20):9490-9496
The effect of polymeric ferric chloride (PFC) addition on phosphorus removal and membrane fouling were investigated in an anoxic/oxic submerged membrane bioreactor. The total phosphorus concentration in effluent averaged at 0.26 mg/L with PFC addition of 10-15 mg/L, while the rate of membrane fouling increased 1.6 times over the control MBR (without PFC addition). Three-dimensional excitation-emission matrix fluorescence spectroscopy and Gel Filtration Chromatography analysis indicated that soluble microbial byproduct-like materials and large molecules (M(W)>100 kDa) were one of the main contributors of biofouling. Fourier transform infrared spectrum confirmed that the major components of the cake layer were proteins and polysaccharides materials. Scanning electron microscopy demonstrated that membrane surfaces were covered with compact gel layer formed by organic substances and Energy Dispersive X-ray analysis indicated that ferric metals were the most important inorganic pollutants. Consequently, soluble organic substances and dose of PFC should be controlled to minimize membrane fouling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号