首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6785篇
  免费   499篇
  国内免费   872篇
  2024年   12篇
  2023年   100篇
  2022年   125篇
  2021年   197篇
  2020年   174篇
  2019年   199篇
  2018年   210篇
  2017年   184篇
  2016年   190篇
  2015年   210篇
  2014年   262篇
  2013年   415篇
  2012年   230篇
  2011年   236篇
  2010年   208篇
  2009年   259篇
  2008年   282篇
  2007年   325篇
  2006年   338篇
  2005年   314篇
  2004年   239篇
  2003年   340篇
  2002年   261篇
  2001年   221篇
  2000年   199篇
  1999年   209篇
  1998年   164篇
  1997年   190篇
  1996年   179篇
  1995年   162篇
  1994年   180篇
  1993年   179篇
  1992年   138篇
  1991年   139篇
  1990年   127篇
  1989年   125篇
  1988年   116篇
  1987年   99篇
  1986年   66篇
  1985年   71篇
  1984年   56篇
  1983年   33篇
  1982年   47篇
  1981年   33篇
  1980年   32篇
  1979年   18篇
  1978年   11篇
  1977年   11篇
  1976年   13篇
  1973年   8篇
排序方式: 共有8156条查询结果,搜索用时 672 毫秒
181.
The timing of root production is one of the parameters required for modelling the root system architecture. The objectives of this study are (1) to describe the rate of appearance of adventitious root primordia of maize and their rate of emergence out of the stem; (2) to test equations for the prediction of the rank of the phytomer on which root emergence occurs, in a wide range of field situations.Maize, cultivar Dea, was grown in controlled conditions and in the field in 1987, 1988, 1989 and 1991. Plants were regularly sampled and the following data were recorded: foliar stage, number of root primordia and number of emerged roots per phytomer. Root primordia were counted in transverse thin sections in the stem.At a single plant level, root primordia differentiation occurred sequentially on the successive phytomers, with no overlapping between two phytomers. The same was true for root emergence. Roots belonging to the same phytomer emerged at approximately the same time.At a plant population level, there was a linear relationship between the rank of the phytomer on which root primordia were differentiated and cumulated degree-days after sowing. A linear relationship was also observed between the rank of the phytomer on which roots were emerging and cumulated degree-days or foliar stage. In the range of field situations tested (several years, sowing dates and planting densities), both equations gave an accurate prediction of the timing of root emergence during the plant cycle.  相似文献   
182.
Growth inhibition of plants suffering from Al toxicity is generally accompanied by impaired root development which can be quantitatively described by reduced specific root length (m g-1 dry root). In addition, the uptake of nutrients such as Mg and Ca is inhibited. Increased supply of either Mg or Ca can significantly diminish the negative effect of Al on root development and improve the Mg or Ca nutrition of the plants. The positive effect of Ca is well established but the effect of Mg has been observed in only a few plan species. Therefore, the effects of increasing Mg and Ca supply on Al toxicity in plants of seven monocots and eight dicots have been now examined in nutrient solution experiments. In general, Mg appears to be more effective than Ca in alleviating Al toxicity with the monocots, whereas the reverse is true for the dicots. Increased concentrations of Mg and Ca in solution seem to protect the plants against Al toxicity by improving the Mg or Ca nutrition and by alleviating the toxic effect of Al on root development.  相似文献   
183.
The importance of macrostructure to root growth of ryegrass (L. perenne) seedlings sown on the soil surface was studied in two soils in which the macrostructure had resulted mainly from root growth and macro-faunal activity. Sets of paired soil cores were used, one of each pair undisturbed and the other ground and repacked to the field bulk density. Undisturbed and repacked soils were first compared at equal water potentials in the range −1.9 to −300 kPa. At equal water potential, the undisturbed soil always had the greater strength (penetration resistance), and root growth was always greater in the repacked soil with no macrostructure than it was in the soil with macrostructure intact. At equal high strength (low water potentials) it appeared that root growth was better when soils were structured. When strength was low (high water potentials), root growth was better in the unstructured soil. Soils were then compared during drying cycles over 21 days. The average rate at which roots grew to a depth of 60 mm, and also the final percentage of plants with a root reaching 60 mm depth, was greatest in repacked soils without macrostructure. The species of vegetation growing in the soil before the experiment affected root growth in undisturbed soil; growth was slower where annual grasses and white clover had grown compared with soil which had supported a perennial grass. It appears that relatively few roots locate and grow in the macrostructure. Other roots grow in the matrix, if it is soft enough to be deformed by roots. Roots in the matrix of a structured soil grow more slowly than roots in structureless soil of equal bulk density and water potential. The development of macrostructure in an otherwise structureless soil, of the type studied, is of no advantage to most roots. However, once a macrostructure has developed, the few roots locating suitable macropores are able to grow at low water potential when soil strength is high. The importance of macrostructure to establishing seedlings in the field lies in rapid penetration of at least a few roots to a depth that escapes surface drying during seasonal drought. ei]{gnB E}{fnClothier}  相似文献   
184.
Cuttings of pea (Pisum sativum L. cv Marma) were treated with 1-aminocyclopropane-l-carboxylic acid (ACC). This treatment caused increased ethylene production and reduction of root formation. The effect of 0.1 mM ACC on the level of endogenous indole-3-acetic acid (IAA) in the rooting zone and in the shoot apex was analyzed by gas chromatography-single ion monitoring mass spectrometry or by high pressure liquid chromatography with fluorimetric detection (HPLC). Concentrations of indole-3-acetylaspartic acid (IAAsp) in the stem bases were also determined using HPLC. The ACC treatment had little effect on the IAA level in the base measured after 24 h, but caused a considerable decrease during the 3 following days. IAAsp increased in the base on days 1, 2 and 3 and then declined. The build up of IAAsp in the base was not affected by ACC during the first two days of the treatment, but later this conjugate decreased more rapidly than in controls. No effect of the ACC treatment was found on the level of IAA in the apex. IAA (1 µM) applied to the cuttings during 24 h reduced the number of roots formed. The possibility that IAA-induced ethylene is involved in this response was investigated.Our results support earlier evidence that the inhibitory effect of ethylene on rooting in pea cuttings is due to decreased IAA levels in the rooting zone. The inhibitory effect of applied IAA is obtained if the internal IAA level is maintained high during the first 24 h, whereas stimulation of rooting occurs if the internal IAA level remains high during an extended period of time. Our results do not support the suggestion that ethylene mediates the inhibitory effect of applied IAA.  相似文献   
185.
[3H]iso-Pentenyladenine ([3H]iP) was fed for 24 h to the tips of intact and root tip-decapitated Pinus pinea seedlings. Twelve and 24 h after application to the roots of intact plants most of the applied radioactivity (±60%) was transported to the shoot. Root tip removal increased transport of the applied radioactivity to the shoot, but the overall pattern of distribution of radioactivity in the seedling did not change. Large amounts of radioactivity were recovered from the elongation zone of the root. Some radioactivity also accumulated in the older part of the root with well-developed lateral roots. When [3H]iP was applied one day after decapitation, no significant changes in the pattern of radioactivity distribution were found between the intact and decapitated root systems. However, when applied 7 days after decapitation there was a significant increase of radioactivity in the region of the root where lateral roots were emerging. HPLC separation of extracts from the different root sections showed that [3H]iP was extensively metabolized in the root. Six peaks of radioactivity, which co-chromatographed with authentic cytokinin standards, were detected.Abbreviations ABA abscisic acid - ADE adenine - IAA indole-acetic acid - iP iso-pentenyladenine - HPLC high performance liquid chromatography - [OG]DHZ O-glycosyldihydrozeatin - [9R-MP]DHZ ribosyldihydrozeatin monophosphate - [9G]iP iso-pentenyladenine-9-glucoside - [9R]Z ribosylzeatin - [9R]iP iso-pentenyladenosine - TLC thin layer chromatography  相似文献   
186.
Small birch plants were grown for up to 80 d in a climate chamber at varied relative addition rates of nitrogen in culture solution, and at ambient (350 μmol mol-1) or elevated (700 μmol mol-1) concentrations of CO2. The relative addition rate of nitrogen controlled relative growth rate accurately and independently of CO2 concentration at sub-optimum levels. During free access to nutrients, relative growth rate was higher at elevated CO2. Higher values of relative growth rate and net assimilation rate were associated with higher values of plant N-concentration. At all N-supply rates, elevated CO2 resulted in higher values of net assimilation rate, whereas leaf weight ratio was independent of CO2. Specific leaf area (and leaf area ratio) was less at higher CO2 and at lower rates of N-supply. Lower values of specific leaf area were partly because of starch accumulation. Nitrogen productivity (growth rate per unit plant nitrogen) was higher at elevated CO2. At sub-optimal N-supply, the higher net assimilation rate at elevated CO2 was offset by a lower leaf area ratio. Carbon dioxide did not affect root/shoot ratio, but a higher fraction of plant dry weight was found in roots at lower N-supply. In the treatment with lowest N-supply, five times as much root length was produced per amount of plant nitrogen in comparison with optimum plants. The specific fine root length at all N-supplies was greater at elevated CO2. These responses of the root system to lower N-supply and elevated CO2 may have a considerable bearing on the acquisition of nutrients in depleted soils at elevated CO2. The advantage of maintaining steady-state nutrition in small plants while investigating the effects of elevated CO2 on growth is emphasized.  相似文献   
187.
The root endodermis of Clivia miniata Reg. was successfully isolated using the cell wall degrading enzymes cellulase and pectinase. The enzymes did not depolymerize those regions of the primary cell walls of anticlinal endodermal root cells where the Casparian strips were located. Since the endodermis of C. miniata roots remained in its primary developmental state over the whole root length, endodermal isolates essentially represented Casparian strips. Thus, sufficient amounts of isolated Casparian strips could be obtained to allow further detailed investigations of the isolates by microscopic, histochemical and analytical methods. Scanning electron microscopy revealed the reticular structure of the Casparian strips completely surrounding the central cylinder of the roots. Whereas in younger parts of the root only the anticlinal cell walls of the endodermis remained intact in the isolates, in older parts of the root the periclinal walls also restricted enzymatic degradation due to the deposition of lignin. Extracts of the isolates with organic solvents did not reveal any wax-like substances which might have been deposited within the cell wall forming a transport barrier, as is the case with cutin and suberin. However, several histochemical and analytical methods (elemental analysis and FTIR spectroscopy) showed that the chemical nature of the Casparian strips of C. miniata roots can definitely be a lignified cell wall. These findings are in complete agreement with studies carried out at the beginning of this century on the chemical nature of the Casparian strips of several other plant species. The implications of these results concerning apoplasmatic transport of solutes and water across Casparian strips are discussed.  相似文献   
188.
189.
The characteristics of sulphate uptake into right-side-out plasma-membrane vesicles isolated from roots of Brassica napus L., Metzger, cv. Drakkar, and purified by aqueous polymer two-phase partitioning, were investigated. Sulphate uptake into the vesicles was driven by an artificially imposed pH gradient (acid outside), and could be observed for 5–10 min before a plateau was reached and no further net uptake occurred. The uptake was partially inhibited in the presence of depolarizing agents and little uptake was observed in the absence of an imposed pH gradient. Uptake was strongly pH-dependent, being greatest at more acidic pH. After imposition of a pH gradient, the capacity for uptake decreased slowly (t1/2>10 min). The uptake had a high-affinity component which was strongly dependent on the external proton concentration (K m=10μM at pH 5.0, 64 μM at pH 6.5). The K m for protons varied from 0.4–1.9 μM as the sulphate concentration was reduced from 33 to 1 μM. A low-affinity component was observed which could be resolved at low temperatures (0 °C). Microsomal membranes that partitioned into the lower phase of the two-phase system gave no indication of high-affinity sulphate transport. Sulphate uptake into plasma-membrane vesicles isolated from sulphur-starved plant material was approximately twofold greater than that observed in those isolated from sulphate-fed plant material. Isolated vesicles therefore mirror the well-known in-vivo response of roots, indicating an increase in the number of transporters to be, at least in part, the underlying cause of derepression.  相似文献   
190.
The presence of the glycolytic enzymes from hexokinase to pyruvate kinase in plastids of seedling pea (Pisum sativum L.) roots was investigated. The recoveries, latencies and specific activities of each enzyme in different fractions was compared with those of organelle marker enzymes. Tryptic-digestion experiments were performed on each enzyme to determine whether activities were bound within membranes. The results indicate that hexokinase (EC 2.7.1.2) and phosphoglyceromutase (EC 5.4.2.1) are absent from pea root plastids. The possible function of the remaining enzymes is considered.Abbreviations GADPH glyceraldehyde 3-phosphate dehydrogenase - PFK phosphofructokinase - PFP pyrophosphate: fructose 6-phosphate 1-phosphotransferase Bronwen A. Trimming gratefully acknowledges the award of a studentship from the Science and Engineering Research Council  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号