首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7038篇
  免费   521篇
  国内免费   890篇
  8449篇
  2024年   15篇
  2023年   106篇
  2022年   133篇
  2021年   211篇
  2020年   181篇
  2019年   204篇
  2018年   218篇
  2017年   188篇
  2016年   194篇
  2015年   217篇
  2014年   271篇
  2013年   422篇
  2012年   236篇
  2011年   239篇
  2010年   210篇
  2009年   267篇
  2008年   286篇
  2007年   333篇
  2006年   342篇
  2005年   320篇
  2004年   244篇
  2003年   350篇
  2002年   270篇
  2001年   227篇
  2000年   203篇
  1999年   212篇
  1998年   170篇
  1997年   197篇
  1996年   184篇
  1995年   170篇
  1994年   188篇
  1993年   185篇
  1992年   147篇
  1991年   145篇
  1990年   133篇
  1989年   130篇
  1988年   121篇
  1987年   106篇
  1986年   69篇
  1985年   79篇
  1984年   67篇
  1983年   35篇
  1982年   50篇
  1981年   43篇
  1980年   36篇
  1979年   27篇
  1978年   13篇
  1977年   13篇
  1976年   13篇
  1973年   8篇
排序方式: 共有8449条查询结果,搜索用时 15 毫秒
71.
This study has investigated the kinetics and mechanism of ultraweak luminescence in maize roots. Mannitol induced the second maximum and enhanced the main maximum of the relative intensity of luminescence from the roots. Hydroquinone and quinone enhanced the relative intensity of the luminescence. Catalase enhanced the maximum of the luminescence and changed the kinetics of the light emission. The effect of catalase on the kinetics was abolished by superoxide dismutase. Ascorbate in the presence of catalase reduced the luminescence maximum, but did not alter the kinetics. In the presence of catalase only, or in the combination with superoxide dismutase, or ascorbate, the luminescence intensity in the stationary phase was significantly lower compared to the control. The results support the participation of superoxide-radical, singlet oxygen, electron transfer and the role of peroxidase in the reactions generating ultraweak luminescence in the roots. Ascorbate, catalase and superoxide dismutase have a protective role in the luminescent reactions.  相似文献   
72.
In laboratory dual-choice assays females of the cabbage root fly, Delia radicum, prefer for oviposition plants with roots damaged by conspecific larvae to undamaged controls. Cauliflower and kale plants were inoculated with root fly eggs (25 per plant) and the hatching larvae were allowed to feed on the roots for various periods of time (1–17 days). After 4 (cauliflower) or 5 (kale) days of larval feeding the oviposition preference was most pronounced and flies laid between 64% and 68% of their eggs near plants with damaged roots. Later, with increasing damage but fewer surviving, and thus actively feeding, larvae, the magnitude of the preference declined. The preference for plants already damaged by conspecific larvae may contribute to the previously observed aggregated distribution of D. radicum eggs in Brassica crop fields.Further experiments revealed that the sensory cues inducing this oviposition preference originate from the complex consisting of the damaged roots, the surrounding substrate (soil) and associated microbes, rather than from the aerial plant parts. In choice assays using the root-substrate complex of damaged and control plants (aerial parts removed), the observed preference for damaged roots was similar to that found for the entire plant but was more pronounced. The damaged roots alone, compared to control roots, received up to 72% (cauliflower) and 75% (kale) of the eggs. By contrast, surrogate leaves sprayed with methanolic leaf surface extracts from the most preferred plants which had been damaged were not discriminated from surrogate leaved sprayed with extracts of the respective control plants. Analysis of glucosinolate levels in methanolic leaf surface extracts revealed that root damage resulted in enhanced concentrations of indole-glucosinolates on the leaf surface in kale but not in cauliflower. Although indole-glucosinolates are oviposition stimulants for the cabbage root fly, the induced changes were apparently too small to influence oviposition behaviour.  相似文献   
73.
Prosaposin Facilitates Sciatic Nerve Regeneration In Vivo   总被引:3,自引:0,他引:3  
Abstract: Prosaposin, a multifunctional protein, is the precursor of saposins, which activate sphingolipid hydrolases. In addition to acting as a precursor for saposins, prosaposin has been shown to rescue hippocampal CA1 neurons from lethal ischemic damage in vivo and to promote neurite extension of neuroblastoma cells in vitro. Here we show that prosaposin, when added to a collagen-filled nerve guide after sciatic nerve transection in guinea pigs, increased dramatically the number of regenerating nerve fibers within the guide. To identify the target neurons of prosaposin during peripheral nerve regeneration, we determined the degree of atrophy and chromatolysis of neurons in the spinal anterior horn and dorsal root ganglia on the prosaposin-treated and untreated side. The effect of prosaposin on large spinal neurons and small neurons of the dorsal root ganglion was more conspicuous. Subsequent immunohistochemistry demonstrated that the atrophy of cholinergic large neurons in the anterior horn is prevented to significant extent by prosaposin treatment. These findings suggest that prosaposin promotes peripheral nerve regeneration by acting on α-motor neurons in the anterior horn and on small sensory neurons in the dorsal root ganglion. The present study raises the possibility of using prosaposin as a tool for the treatment of peripheral nerve injuries.  相似文献   
74.
75.
76.
Summary The sesquiterpene quinone currently known as perezone is abundantly produced by the roots of Perezia cuernavacana. This compound is of biotechnological interest since it may be used as a pigment and has several pharmacological properties. In this work we demonstrate that perezone is also produced in transformed root cultures of P. cuernavacana. Hairy roots were induced by inoculation of internodal segments of sterile plants of P. cuernavacana with Agrobacterium rhizogenes AR12 strain. The axenic liquid MS medium cultures of the hairy roots isolated from the internodes showed active growth in the absence of growth regulators. The transformed nature of the tissue was confirmed by genomic integration (PCR and slot blot hybridization) and expression (enzyme activity) of the marker gus-gene. The production of perezone by a transformed root culture was evidenced by IR spectroscopy. Our results offer an alternative for enhanced production of perezone and represent an advantage over its extraction from natural plant populations which present problems in their agronomic culture.  相似文献   
77.
In this paper we describe an experimental approach which allows turgor (p) in an impeded root to be measured without the need to remove the root from the impeding environment. The maximum axial growth pressure (σmax) generated by completely impeded pea (Pisum sativum L.) roots was measured using a novel apparatus incorporating a force transducer. The apparatus was designed so that it was possible to gain access to the impeded root with the microcapillary of a pressure probe and so obtain in situ measurements of P. Turgor in cells in the apical region of impeded roots was 0.78 MPa, compared with 0.55 MPa in unimpeded roots. In impeded roots, σmax was 0.52 MPa, showing that the pressure component resulting from cell wall tension (W, where W=P–σ) decreased from 0.55 to 0.26 MPa as the roots became impeded. When impeded roots were removed from the apparatus, there was no decrease in P over the following 90 min. Impedance did not cause P to change in the non-elongating part of the roots further from the apex.  相似文献   
78.
79.
80.
Random root movements in weightlessness   总被引:1,自引:0,他引:1  
The dynamics of root growth was studied in weightlessness. In the absence of the gravitropic reference direction during weightlessness, root movements could be controlled by spontaneous growth processes, without any corrective growth induced by the gravitropic system. If truly random of nature, the bending behavior should follow socalled 'random walk' mathematics during weightlessness. Predictions from this hypothesis were critically tested.
In a Spacelab ESA-experiment, denoted RANDOM and carried out during the IML-2 Shuttle flight in July 1994, the growth of garden cress ( Lepidium sativum ) roots was followed by time lapse photography at 1-h intervals.
The growth pattern was recorded for about 20 h. Root growth was significantly smaller in weightlessness as compared to gravity (control) conditions.
It was found that the roots performed spontaneous movements in weightlessness. The average direction of deviation of the plants consistently stayed equal to zero, despite these spontaneous movements. The average squared deviation increased linearly with time as predicted theoretically (but only for 8–10 h).
Autocorrelation calculations showed that bendings of the roots, as determined from the 1-h photographs, were uncorrelated after about a 2-h interval.
It is concluded that random processes play an important role in root growth. Predictions from a random walk hypothesis as to the growth dynamics could explain parts of the growth patterns recorded. This test of the hypothesis required microgravity conditions as provided for in a space experiment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号