首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7832篇
  免费   613篇
  国内免费   908篇
  9353篇
  2024年   16篇
  2023年   122篇
  2022年   152篇
  2021年   237篇
  2020年   220篇
  2019年   246篇
  2018年   241篇
  2017年   225篇
  2016年   238篇
  2015年   259篇
  2014年   310篇
  2013年   481篇
  2012年   272篇
  2011年   282篇
  2010年   256篇
  2009年   305篇
  2008年   342篇
  2007年   359篇
  2006年   386篇
  2005年   354篇
  2004年   261篇
  2003年   367篇
  2002年   292篇
  2001年   254篇
  2000年   221篇
  1999年   237篇
  1998年   194篇
  1997年   200篇
  1996年   196篇
  1995年   179篇
  1994年   193篇
  1993年   199篇
  1992年   148篇
  1991年   149篇
  1990年   136篇
  1989年   130篇
  1988年   126篇
  1987年   105篇
  1986年   79篇
  1985年   78篇
  1984年   60篇
  1983年   38篇
  1982年   51篇
  1981年   38篇
  1980年   35篇
  1979年   20篇
  1978年   11篇
  1977年   11篇
  1976年   13篇
  1973年   8篇
排序方式: 共有9353条查询结果,搜索用时 0 毫秒
11.
12.
Aqueous extracts of smoke, derived from Themeda triandra, a fire-climax grass, and Passerina vulgaris, a fynbos plant, stimulated the growth of primary root sections of tomato roots in suspension culture. The optimal dilution for both extracts was 1:2000. Several of the fractions obtained from TLC separation of the Themeda and the Passerina extracts significantly promoted primary root growth. The auxins naphthaleneacetic acid (NAA), indolebutyric acid (IBA) and indoleacetic acid (IAA) were found to stimulate the growth of the primary root axis, with IAA and NAA significantly promoting lateral root number. Similarly, the naturally occurring cytokinins, zeatin and its derivatives (zeatin-O-glucoside; dihydrozeatin and zeatin riboside) stimulated primary root length. Zeatin and dihydrozeatin promoted secondary root growth, but only at very low concentrations.  相似文献   
13.
14.
15.
Aims Rhododendron ponticum L. is reputed to be a post Plio‐Pleistocene relict plant species with a disjunct distribution that comprises the Iberian Peninsula to the west and the Euxinian region plus some restricted Mediterranean areas to the east. We analysed the ecological range (of subsp. baeticum) in the western area (Aljibe Mountains, north of the Strait of Gibraltar) to understand the factors determining the present area limitation. Location Sierra del Aljibe, north of the Strait of Gibraltar (Iberian Peninsula). Methods We selected 20 riparian sites where R. ponticum is common, and compiled data on the ecological diversity of associated woody species and ferns. We established a 500‐m main transect in each site, along the stream or river course, in which we placed five 20‐m‐long plots at regular intervals. We recorded physiographic habitat features, woody plants and fern abundance, and the number of R. ponticum individuals. Results Rhododendron ponticum in southern Spain is restricted to riparian forests in acidic soils (pH 4.0–6.4), and is mainly found on the banks of inclined and enclosed streams. In our inventory we recorded 59 woody taxa and 12 ferns, with R. ponticum being the dominant species of the understorey (mean abundance 78.6%). The communities are characterized by a high incidence of the humid warm temperate element, both in number of species (18.8 ± 3.7 per site) and abundance; meanwhile, the presence of the modern Mediterranean element (mean number of species 3.4 ± 3.8 per site) appears to be favoured by disturbance. These ecological–historical groups of taxa also show distinct patterns of typological habit, frequency of endemism, infrageneric diversity and geographical range. Populations of R. ponticum are characterized by a very variable density of seedlings in many sites, and the virtual lack of juveniles. Main conclusions Riparian forests of the Aljibe Mountains constitute a refuge for R. ponticum where the species persists, but populations appear to be in decline. The narrow ecological range of R. ponticum in the area strongly contrasts with its wide amplitude in the eastern natural area, mainly the Euxinian region, where R. ponticum probably finds better conditions due to the environmental heterogeneity of the region, and the lack of a hot dry season.  相似文献   
16.
Using an insoluble inorganic salt precipitation technique, the permeability of cell walls and especially of endodermal Casparian bands (CBs) for ions was tested in young roots of corn (Zea mays) and rice (Oryza sativa). The test was based on suction of either 100 µm CuSO4 or 200 µm K4[Fe(CN)6] into the root from its medium using a pump (excised roots) or transpirational stream (intact seedlings), and subsequent perfusion of xylem of those root segments with the opposite salt component, which resulted in precipitation of insoluble brown crystals of copper ferrocyanide. Under suction, Cu2+ could cross the endodermis apoplastically in both plant species (although at low rates) developing brown salt precipitates in cell walls of early metaxylem and in the region between CBs and functioning metaxylem vessels. Hence, at least Cu2+ did cross the endodermis dragged along with the water. The results suggested that CBs were not perfect barriers to apoplastic ion fluxes. In contrast, ferrocyanide ions failed to cross the mature endodermis of both corn and rice at detectable amounts. The concentration limit of apoplastic copper was 0.8 µm at a perfusion with 200 µm K4[Fe(CN)6]. Asymmetric development of precipitates suggested that the cation, Cu2+, moved faster than the anion, [Fe(CN)6]4–, through cell walls including CBs. Using Chara cell wall preparations (‘ghosts’) as a model system, it was observed that, different from Cu2+, ferrocyanide ions remained inside wall-tubes suggesting a substantially lower permeability of the latter which agreed with the finding of an asymmetric development of precipitates. In both corn and rice roots, there was a significant apoplastic flux of ions in regions where laterals penetrated the endodermis. Overall, the results show that the permeability of CBs to ions is not zero. CBs do not represent a perfect barrier for ions, as is usually thought. The permeability of CBs may vary depending on growth conditions which are known to affect the intensity of formation of bands.  相似文献   
17.
Summary The chromosomal genes chvA and chvB of Agrobacterium tumefaciens, which mediate attachment to plant cells, were found to be essential not only for tumour induction but also for the formation of root nodules on plants.  相似文献   
18.
19.
Summary Segments of the TL-DNA of the agropine type Ri plasmid pRi 1855 encompassing single and groups of open-reading frames were cloned in the Ti plasmid-derived binary vector system Bin 19. Leaf disc infections on Nicotiana tabacum led to transformed plants, some of which showed typical hairy root phenotypes, such as the wrinkled leaf morphology, excessive and partially non geotropic root systems and the ability of leaf explants to differentiate roots in a hormone-free culture medium. Particularly interestingly, most of these traits were shown by plants transformed with a TL-DNA segment encompassing the single ORF 11, corresponding to the rolB locus. Hairy root can be induced by this latter T-DNA segment on wounded stems of tobacco plants; hairy root induction on carrot discs requires, on the contrary, a more complex complement of TL-DNA genes.Abbreviations YMB yeast mannitol broth - MS Murashige and Skoog medium - 6-BAP 6-benzylaminopurine - NAA naphthalene acetic acid - Km kanamycin - Cb carbenicillin  相似文献   
20.
Fifty strains of Frankia were tested for their ability to nodulate six species of actinorhizal plants. Pure cultured strains were used to inoculate seedlings of Alnus glutinosa (L.) Gaertn., Alnus rubra Bong., Casuarina equisetifolia L., Elaeagnus angustifolia L., Hippophaë rhamnoides L. and Myrica cerifera L. in nutrient solution culture. From the results of this study, host inoculation groups among the actinorhizal plants were defined. Although overlap between host inoculation groups appears to be common, the results from this study did not support the view that Frankia strains are promiscuous. All Frankia strains tested in this study could easily be classified into four major host-specificity groups.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号