首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7526篇
  免费   569篇
  国内免费   909篇
  2024年   14篇
  2023年   111篇
  2022年   134篇
  2021年   220篇
  2020年   202篇
  2019年   225篇
  2018年   240篇
  2017年   208篇
  2016年   215篇
  2015年   235篇
  2014年   290篇
  2013年   465篇
  2012年   257篇
  2011年   276篇
  2010年   238篇
  2009年   287篇
  2008年   307篇
  2007年   358篇
  2006年   374篇
  2005年   346篇
  2004年   269篇
  2003年   361篇
  2002年   294篇
  2001年   243篇
  2000年   204篇
  1999年   220篇
  1998年   172篇
  1997年   203篇
  1996年   187篇
  1995年   169篇
  1994年   198篇
  1993年   190篇
  1992年   151篇
  1991年   147篇
  1990年   136篇
  1989年   130篇
  1988年   122篇
  1987年   106篇
  1986年   72篇
  1985年   82篇
  1984年   68篇
  1983年   42篇
  1982年   52篇
  1981年   41篇
  1980年   34篇
  1979年   28篇
  1978年   15篇
  1977年   14篇
  1976年   18篇
  1973年   9篇
排序方式: 共有9004条查询结果,搜索用时 31 毫秒
911.
The rth3 ( roothairless 3 ) mutant is specifically affected in root hair elongation. We report here the cloning of the rth3 gene via a PCR-based strategy (amplification of insertion mutagenized sites) and demonstrate that it encodes a COBRA-like protein that displays all the structural features of a glycosylphosphatidylinositol anchor. Genes of the COBRA family are involved in various types of cell expansion and cell wall biosynthesis. The rth3 gene belongs to a monocot-specific clade of the COBRA gene family comprising two maize and two rice genes. While the rice ( Oryza sativa ) gene OsBC1L1 appears to be orthologous to rth3 based on sequence similarity (86% identity at the protein level) and maize/rice synteny, the maize ( Zea mays L.) rth3-like gene does not appear to be a functional homolog of rth3 based on their distinct expression profiles. Massively parallel signature sequencing analysis detected rth3 expression in all analyzed tissues, but at relatively low levels, with the most abundant expression in primary roots where the root hair phenotype is manifested. In situ hybridization experiments confine rth3 expression to root hair-forming epidermal cells and lateral root primordia. Remarkably, in replicated field trials involving near-isogenic lines, the rth3 mutant conferred significant losses in grain yield.  相似文献   
912.
913.
应用微核技术对北京三海水域污染状况的研究   总被引:16,自引:0,他引:16  
2003和2004年于北京三海(西海、后海和前海)分别采集21、22个样品,利用蚕豆根尖微核技术对水体的污染状况进行了遗传毒性分析。结果表明,水体总体显示出不同程度的遗传毒性特征。2003、2004两年中,微核相对率〈1.5的样本分别占4.7619%、18.1818%,主要分布于前海和后海湖心区域;微核相对率为1.5~2.0的样本分别占28.5714%和13.6364%;微核相对率为2.0~3.5的样本分别占28.5714%和45.4545%;微核相对率〉3.5的样本分别占38.0952%和22.7273%。其中。在民居密集的西海区域,两年重度污染率均达到40%。结果表明,水体污染程度与人为因素具有显著相关。本文对试验方法亦进行了讨论。  相似文献   
914.
用0.05%~8.00%的甘露醇、山梨醇和聚乙二醇6000等3种渗透调节剂可提高转枯草芽孢杆菌纤溶酶(Bacillus subtilis fibrinolytic enzyme, BSFE)转基因烟草(Nicotiana tabacum L.)根系BSFE的分泌表达水平,其水培液BSFE活性在15 d内基本呈抛物线型变化趋势.经3种渗透剂处理后转BSFE基因烟草水培液的BSFE活性峰值明显高于对照,且出现时间比对照相对延迟1-2d.甘露醇、山梨醇和聚乙二醇6000可作为该转基因烟草根系BSFE分泌表达的有效化学调节剂.  相似文献   
915.
Marker-assisted selection for traits that are difficult to screen for, such as resistance to many sugarcane diseases, has the potential to facilitate the development of improved cultivars in sugarcane. Pachymetra root rot (PRR) and brown rust resistance ratings were obtained over two years for 192 I1 progeny (progeny produced by two heterozygous, non-inbred parental lines) of a sugarcane (Saccharum spp. hybrid) cross between two elite sugarcane clones, Q117 and 74C42. Approximately 1000 single-dose markers, including microsatellite (SSR), amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers, were scored across the population and maps containing approximately 400 markers were constructed for each parent. At p ≤ 0.01, two genomic regions, one from the female Q117 map and a different region from the 74C42 male map, plus an unlinked bi-parental simplex marker (single-dose marker present in both parents) were identified as associated with PRR over both years of data collection. These regions explained between 6 and 16% of the phenotypic variation. An additional region was identified in the female map as associated with PRR at p ≤ 0.01 in one year and p ≤ 0.05 in the second year. This region explained between 4 and 8% of the phenotypic variation. For brown rust, two genomic regions, one from the female map and one from the male map, plus an unlinked marker from both maps, were identified as associated with brown rust resistance at p ≤ 0.01 over two years of phenotypic data. Each region explained between 7 and 18% of the phenotypic variation. Several additional regions were identified in both maps as associated with brown rust at p ≤ 0.01 in one year and p ≤ 0.05 in the second year. These regions also explained between 5 and 11% of the phenotypic variation. To validate these markers and determine whether they would be useful in alternative germplasm, markers from each genomic region associated with PRR or brown rust were screened across a set of 154 elite sugarcane clones; PRR and brown rust ratings were available for 131 and 72 of the clones, respectively. For PRR, three of the 6 markers tested remained significantly associated (p ≤ 0.01) with resistance ratings in the elite clone set. For brown rust, only one of the seven markers tested remained significantly associated (p ≤ 0.01) with resistance in the elite clone set, with one other marker associated at p ≤ 0.05. These results suggest that these markers could be broadly effective in selecting for PRR and/or brown rust resistance in sugarcane breeding programs.  相似文献   
916.
Fine root dynamics have the potential to contribute significantly to ecosystem‐scale biogeochemical cycling, including the production and emission of greenhouse gases. This is particularly true in tropical forests which are often characterized as having large fine root biomass and rapid rates of root production and decomposition. We examined patterns in fine root dynamics on two soil types in a lowland moist Amazonian forest, and determined the effect of root decay on rates of C and N trace gas fluxes. Root production averaged 229 (±35) and 153 (±27) g m?2 yr?1 for years 1 and 2 of the study, respectively, and did not vary significantly with soil texture. Root decay was sensitive to soil texture with faster rates in the clay soil (k=?0.96 year?1) than in the sandy loam soil (k=?0.61 year?1), leading to greater standing stocks of dead roots in the sandy loam. Rates of nitrous oxide (N2O) emissions were significantly greater in the clay soil (13±1 ng N cm?2 h?1) than in the sandy loam (1.4±0.2 ng N cm?2 h?1). Root mortality and decay following trenching doubled rates of N2O emissions in the clay and tripled them in sandy loam over a 1‐year period. Trenching also increased nitric oxide fluxes, which were greater in the sandy loam than in the clay. We used trenching (clay only) and a mass balance approach to estimate the root contribution to soil respiration. In clay soil root respiration was 264–380 g C m?2 yr?1, accounting for 24% to 35% of the total soil CO2 efflux. Estimates were similar using both approaches. In sandy loam, root respiration rates were slightly higher and more variable (521±206 g C m2 yr?1) and contributed 35% of the total soil respiration. Our results show that soil heterotrophs strongly dominate soil respiration in this forest, regardless of soil texture. Our results also suggest that fine root mortality and decomposition associated with disturbance and land‐use change can contribute significantly to increased rates of nitrogen trace gas emissions.  相似文献   
917.
We investigated the effects of three elevated atmospheric CO2 levels on a Populus deltoides plantation at Biosphere 2 Laboratory in Oracle Arizona. Stable isotopes of carbon have been used as tracers to separate the carbon present before the CO2 treatments started (old C), from that fixed after CO2 treatments began (new C). Tree growth at elevated [CO2] increased inputs to soil organic matter (SOM) by increasing the production of fine roots and accelerating the rate of root C turnover. However, soil carbon content decreased as [CO2] in the atmosphere increased and inputs of new C were not found in SOM. Consequently, the rates of soil respiration increased by 141% and 176% in the 800 and 1200 μL L?1 plantations, respectively, when compared with ambient [CO2] after 4 years of exposure. However, the increase in decomposition of old SOM (i.e. already present when CO2 treatments began) accounted for 72% and 69% of the increase in soil respiration seen under elevated [CO2]. This resulted in a net loss of soil C at a rate that was between 10 and 20 times faster at elevated [CO2] than at ambient conditions. The inability to retain new and old C in the soil may stem from the lack of stabilization of SOM, allowing for its rapid decomposition by soil heterotrophs.  相似文献   
918.
Sesame (Sesamum indicum L.) hairy roots were transformed with a fungal (Aspergillus) phytase and their culture conditions were surveyed for the extra-cellular production of the recombinant phytase protein in shake flasks. Kanamycin resistance of sesame hairy roots was observed at 50 μg ml−1 kanamycin sulfate and southern hybridization analysis confirmed the existence of the phytase gene in the hairy root genomic DNA. The continuous dark condition was more effective for both the root growth and phytase production than light. Slightly higher root growth was determined at 30 °C than 26 °C in Murashige & Skoog (MS) medium supplemented with 3% sucrose, while the final phytase production was greatest in MS medium with 5 or 3% sucrose at both temperatures of 26 and at 30 °C. Among the culture media used, full-strength MS medium was exclusively efficient for production of the recombinant phytase. Most rapid increase rates in both the root growth and phytase production were detected at the 4th week of the culture periods and thereafter their rates began to decrease. Our results indicated that 5–6-week culture periods may be necessary for the maximal phytase production. Western analysis revealed that even though the phytase proteins expressed were measured with greater activities in the liquid medium than in the root tissues, they were still retained in the tissues.  相似文献   
919.
Plants have evolved some mechanisms to maximize the efficiency of phosphorus acquisition.Changes in root architecture are one such mechanism. When Fraxinus mandshurica Rupr. seedlings were grown under conditions of low phosphorus availability, the length of cells in the meristem zone of the lateral roots was longer, but the length of cells in the elongation and mature zones of the lateral roots was shorter,compared with seedlings grown under conditions of high phosphorus availability. The elongation rates of primary roots increased as phosphorus availability increased, but the elongation rates of the branched zones of the primary roots decreased. The number of lateral root primordia and the length of the lateral roots decreased as phosphorus availability increased. The topological index (altitude slope) decreased as phosphorus availability increased, suggesting that root architecture tended to be herringbone-like when seedlings were grown under conditions of low phosphate availability. Herringbone-like root systems exploit nutrients more efficiently, but they have higher construction costs than root systems with a branching pattern.  相似文献   
920.
Hydroponic experiments were conducted in a growth chamber and changes in the hydraulic conductivity of sorghum (Sorghum vulgare Pers.) roots (Lpr) at the three-leaf stage were measured using the pressure chamber method. Water deficiency was imposed with polyethylene glycol (PEG) 6000 and the phosphorus (P) levels were controlled by complete Hoagland solution with and without P nutrient. The objective of this study was to investigate the effect of P nutrition on root Lpr under water deficiency. The results showed that the Lpr in P deficiency treatments decreased markedly, but the Lpr recovered to the same value as that of control when sufficient P was supplied for 4-24 h. Water deficiency decreased Lpr, but the hydraulic conductivity of the roots with sufficient P supply was still higher than that of plants without P supply. When resuming water supply, the Lpr of the water-deficient plants under P supply recovered faster than that of plants without P supply, which indicates that plants with sufficient P nutrient are more drought tolerant and have a greater ability to recover after drought. The treatment of HgCl2 indicated that P nutrient could regulate the Lpr by affecting the activity and the expression levels of aquaporins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号