首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7526篇
  免费   569篇
  国内免费   909篇
  2024年   14篇
  2023年   111篇
  2022年   134篇
  2021年   220篇
  2020年   202篇
  2019年   225篇
  2018年   240篇
  2017年   208篇
  2016年   215篇
  2015年   235篇
  2014年   290篇
  2013年   465篇
  2012年   257篇
  2011年   276篇
  2010年   238篇
  2009年   287篇
  2008年   307篇
  2007年   358篇
  2006年   374篇
  2005年   346篇
  2004年   269篇
  2003年   361篇
  2002年   294篇
  2001年   243篇
  2000年   204篇
  1999年   220篇
  1998年   172篇
  1997年   203篇
  1996年   187篇
  1995年   169篇
  1994年   198篇
  1993年   190篇
  1992年   151篇
  1991年   147篇
  1990年   136篇
  1989年   130篇
  1988年   122篇
  1987年   106篇
  1986年   72篇
  1985年   82篇
  1984年   68篇
  1983年   42篇
  1982年   52篇
  1981年   41篇
  1980年   34篇
  1979年   28篇
  1978年   15篇
  1977年   14篇
  1976年   18篇
  1973年   9篇
排序方式: 共有9004条查询结果,搜索用时 187 毫秒
11.
Comparative two-dimensional electrophoresis showed six proteins, which were significantly produced in the root of salt-tolerant barley. These proteins were identified as stress/defense-related proteins that do not scavenge reactive oxygen species directly, suggesting that salt-tolerant barley develops not only an antioxidative system, but also physical and biochemical changes to cope with salt stress.  相似文献   
12.
13.
Three hydroxy-1,8-cineole glucopyranosides, (1R,2R,4S)- and (1S,2S,4R)-trans-2-hydroxy-1,8-cineole β-D-glucopyranosides, and (1R,3S,4S)-trans-3-hydroxy-1,8-cineole β-D-glucopyranoside, which are possible precursors of acetoxy-1,8-cineoles as unique aroma components, were isolated from the rhizomes of greater galangal (Alpinia galanga W.). Their structures were analyzed by FAB-MS and NMR spectrometry, and the absolute configulation of each aglycone was determined by using a GC-MS analysis with a capillary column coated with a chiral stationary phase. The composition of the diastereomers of (1R,2R,4S)- and (1S,2S,4R)- trans-2-hydroxy-1,8-cineole β-D-glucopyranosides in the rhizomes was determined as 3:7 by a GC-MS analysis after preparing the trifluoroacetate derivatives of the glucosides.  相似文献   
14.
《植物生态学报》2015,39(8):816
Aims Fractal root system is phenotypic plasticity result of plant root architecture to respond to environmental heterogeneity, may reflect the growth strategy of plants to adapt to environmental conditions. Our objective was to explore the relationship between root fractal dimension and fractal abundance of fractal root system of Melica przewalskyi population in response to aspect variation in the northwest of China. Methods The study site was located in a degraded alpine grassland on the northern slope in Qilian Mountains, Gansu Province, China. Survey and sampling were carried out at 40 plots which were set up along four slope aspects transects with 20 m distance between adjacent plots. Handheld GPS was used to determine the elevation, longitude and latitude of each plot. ArcGIS was used to set up digital elevation model (DEM). Community traits were investigated and six individuals roots of M. przewalskyi were collected randomly at each plot. The samples were cleaned and divided into different organs, then scanning the root with the Win-RHIZO for measurements of fractal dimension and fractal abundance in laboratory, and their biomass were then measured after being dried at 80 °C in an oven. Important findings With the slope aspect turned from north to east, west, and south, the density, height and soil moisture content of the plant community displayed a pattern of initial decline, the height, density, root fractal abundance of M. przewalskyi increased and the root fractal dimension decreased. The root fractal dimension was negatively associated with the fractal abundance in all aspects, but the relationship varied along the slope aspects gradient; there was a highly significant negative correlation (p < 0.01) between the root fractal dimension and fractal abundance at north slope and south slope aspect, whereas the correlation only reached a significant level (p < 0.05) at the east slope aspect and west slope aspect; indicating that there is a trade-off between the root fractal dimension and fractal abundance. In addition, when the slope aspect changed from north to east, west and south, the standardized major axis (SMA) slope of the regression equation in the scaling relationships between root fractal dimension and fractal abundance increased (p < 0.05), indicating that the roots of M. przewalskyi at the droughty southern slope have less branch and more sparse in the same soil volume of root exploitation and utilization. Consequently, the resource allocation pattern on reasonable trade-off between root fractal dimension and fractal abundance in different slope aspect of M. przewalskyi, reflects the relationship between the income and the cost of construction of plant root architecture.  相似文献   
15.
Aqueous extracts of smoke, derived from Themeda triandra, a fire-climax grass, and Passerina vulgaris, a fynbos plant, stimulated the growth of primary root sections of tomato roots in suspension culture. The optimal dilution for both extracts was 1:2000. Several of the fractions obtained from TLC separation of the Themeda and the Passerina extracts significantly promoted primary root growth. The auxins naphthaleneacetic acid (NAA), indolebutyric acid (IBA) and indoleacetic acid (IAA) were found to stimulate the growth of the primary root axis, with IAA and NAA significantly promoting lateral root number. Similarly, the naturally occurring cytokinins, zeatin and its derivatives (zeatin-O-glucoside; dihydrozeatin and zeatin riboside) stimulated primary root length. Zeatin and dihydrozeatin promoted secondary root growth, but only at very low concentrations.  相似文献   
16.
Heterotrimeric G protein is involved in plant growth and development, while the role of rice (Oryza sativa) G protein γ subunit qPE9-1 in response to low-phosphorus (LP) conditions remains unclear. The gene expression of qPE9-1 was significantly induced in rice roots under LP conditions. Rice varieties carrying the qPE9-1 allele showed a stronger primary root response to LP than the varieties carrying the qpe9-1 allele (mutant of the qPE9-1 allele). Transgenic rice plants with the qPE9-1 allele had longer primary roots and higher P concentrations than those with the qpe9-1 allele under LP conditions. The plasma membrane (PM) H+-ATPase was important for the qPE9-1-mediated response to LP. Furthermore, OsGF14b, a 14-3-3 protein that acts as a key component in activating PM H+-ATPase for root elongation, is also involved in the qPE9-1 mediation. Moreover, the overexpression of OsGF14b in WYJ8 (carrying the qpe9-1 allele) partially increased primary root length under LP conditions. Experiments using R18 peptide (a 14-3-3 protein inhibitor) showed that qPE9-1 is important for primary root elongation and H+ efflux under LP conditions by involving the 14-3-3 protein. In addition, rhizosheath weight, total P content, and the rhizosheath soil Olsen-P concentration of qPE9-1 lines were higher than those of qpe9-1 lines under soil drying and LP conditions. These results suggest that the G protein γ subunit qPE9-1 in rice plants modulates root elongation for phosphorus uptake by involving the 14-3-3 protein OsGF14b and PM H+-ATPase, which is required for rice P use.  相似文献   
17.
18.
19.
We characterized the response of root hair density to phosphorus (P) availability in Arabidopsis thaliana. Arabidopsis plants were grown aseptically in growth media with varied phosphorus concentrations, ranging from 1 mmol m3 to 2000 mmol m3 phosphorus. Root hair density (number of root hairs per mm of root length) was analysed starting at 7 d of growth. Root hair density was highly regulated by phosphorus availability, increasing significantly in roots exposed to low-phosphorus availability. The initial root hairs produced by the radicle were not sensitive to phosphorus availability, but began to respond after 9 d of growth. Root hair density was about five times greater in low phosphorus (1 mmol m3) than in high phosphorus (1000 mmol m3) media. Root hair density decreased logarithmically in response to increasing phosphorus concentrations within that range. Root hair density also increased in response to deficiencies of several other nutrients, but not as strongly as to low phosphorus. Indoleacetic acid (IAA), the auxin transport inhibitor 2-(p-chlorophenoxy)-2-methylpropionic acid (CMPA), the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and the ethylene synthesis inhibitor amino-oxyacetic acid (AOA) all increased root hair density under high phosphorus but had very little effect under low phosphorus. Low phosphorus significantly changed root anatomy, causing a 9% increase in root diameter, a 31% decrease in the cross-sectional area of individual trichoblasts, a 40% decrease in the cross-sectional area of individual atrichoblasts, and 45% more cortical cells in cross-section. The larger number of cortical cells and smaller epidermal cell size in low phosphorus roots increased the number of trichoblast files from eight to 12. Two-thirds of increased root hair density in low phosphorus roots was caused by increased likelihood of trichoblasts to form hairs, and 33% of the increase was accounted for by changes in low phosphorus root anatomy resulting in an increased number of trichoblast files. These results show that phosphorus availability can fundamentally alter root anatomy, leading to changes in root hair density, which are presumably important for phosphorus acquisition.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号