全文获取类型
收费全文 | 7289篇 |
免费 | 518篇 |
国内免费 | 905篇 |
专业分类
8712篇 |
出版年
2024年 | 14篇 |
2023年 | 110篇 |
2022年 | 137篇 |
2021年 | 208篇 |
2020年 | 184篇 |
2019年 | 216篇 |
2018年 | 219篇 |
2017年 | 194篇 |
2016年 | 199篇 |
2015年 | 227篇 |
2014年 | 281篇 |
2013年 | 445篇 |
2012年 | 252篇 |
2011年 | 260篇 |
2010年 | 222篇 |
2009年 | 280篇 |
2008年 | 312篇 |
2007年 | 349篇 |
2006年 | 374篇 |
2005年 | 339篇 |
2004年 | 261篇 |
2003年 | 368篇 |
2002年 | 283篇 |
2001年 | 230篇 |
2000年 | 211篇 |
1999年 | 218篇 |
1998年 | 170篇 |
1997年 | 204篇 |
1996年 | 191篇 |
1995年 | 171篇 |
1994年 | 183篇 |
1993年 | 189篇 |
1992年 | 143篇 |
1991年 | 140篇 |
1990年 | 130篇 |
1989年 | 128篇 |
1988年 | 120篇 |
1987年 | 100篇 |
1986年 | 72篇 |
1985年 | 72篇 |
1984年 | 61篇 |
1983年 | 35篇 |
1982年 | 49篇 |
1981年 | 35篇 |
1980年 | 35篇 |
1979年 | 19篇 |
1978年 | 14篇 |
1977年 | 12篇 |
1976年 | 14篇 |
1973年 | 8篇 |
排序方式: 共有8712条查询结果,搜索用时 15 毫秒
41.
The effects of root-zone salinity (0, 30, and 60 mmol L–1 of NaCl) and root-zone temperature (10, 15, 20, and 25°C) and their interactions on the number of tillers, total dry matter production, and the concentration of nutrients in the roots and tops of barley (Hordeum vulgare L.) were studied. Experiments were conducted in growth chambers (day/night photoperiod of 16/8 h and constant air temperature of 20°C) and under water-culture conditions. Salinity and root temperature affected all the parameters tested. Interactions between salinity and temperature were significant (p<0.05) for the number of tillers, growth of tops and roots, and the concentration of Na, K, P in the tops and the concentration of P in the roots. Maximum number of tillers and the highest dry matter were produced when the root temperature was at the intermediate levels of 15 to 20°C. Effect of salinity on most parameters tested strongly depended on the prevailing root temperature. For example, at root temperature of 10°C addition of 30 mmol L–1 NaCl to the nutrient solution stimulated the growth of barley roots; at root temperature of 25°C, however, the same NaCl concentration inhibited the root growth. At 60 mmol L–1, root and shoot growth were maximum when root temperature was kept at the intermediate level of 15°C; most inhibition of salinity occurred at both low (10°C) and high (25°C) root temperatures. As the root temperature was raised from 10 to 25°C, the concentration of Na generally decreased in the tops and increased in the roots. At a given Na concentration in the tops or in the roots, respective growth of tops or roots was much less inhibited if the roots were grown at 15–20°C. It is concluded that the tolerance of barley plant to NaCl salinity of the rooting media appears to be altered by the root temperature and is highest if the root temperature is kept at 15 to 20°C. 相似文献
42.
43.
44.
Critical analysis of root : shoot ratios in terrestrial biomes 总被引:14,自引:0,他引:14
45.
Johnsen K Maier C Sanchez F Anderson P Butnor J Waring R Linder S 《Plant, cell & environment》2007,30(1):128-134
Quantifying below-ground carbon (C) allocation is particularly difficult as methods usually disturb the root-mycorrhizal-soil continuum. We reduced C allocation below ground of loblolly pine trees by: (1) physically girdling trees and (2) physiologically girdling pine trees by chilling the phloem. Chilling reduced cambium temperatures by approximately 18 degrees C. Both methods rapidly reduced soil CO2 efflux, and after approximately 10 days decreased net photosynthesis (P(n)), the latter indicating feedback inhibition. Chilling decreased soil-soluble C, indicating that decreased soil CO2 efflux may have been mediated by a decrease in root C exudation that was rapidly respired by microbes. These effects were only observed in late summer/early autumn when above-ground growth was minimal, and not in the spring when above-ground growth was rapid. All of the effects were rapidly reversed when chilling was ceased. In fertilized plots, both chilling and physical girdling methods reduced soil CO2 efflux by approximately 8%. Physical girdling reduced soil CO2 efflux by 26% in non-fertilized plots. This work demonstrates that phloem chilling provides a non-destructive alternative to reducing the movement of recent photosynthate below the point of chilling to estimate C allocation below ground on large trees. 相似文献
46.
Plants respond to their environment through adaptations such as root proliferation in nutrient-rich patches. Through their burrows and casts production in soil, earthworms create heterogeneity which could lead to local root adaptations or systemic effects. To investigate the effect of earthworms on root system morphology and determine whether earthworm effect is local or systemic, we set up two independent split root experiments with rice or barley, (i) without earthworm (CC), (ii) with earthworms in both compartments (EE), and (iii) with earthworms in one single compartment (CE). Earthworms had an effect on belowground plant biomass. The relative length of thick roots decreased with an increasing abundance of earthworms. Some root diameter classes responded to earthworm number in a linear or curvilinear way, making simple conclusions difficult. We found no difference in root biomass or morphology between the two compartments of the split root system in the CE treatment, but a positive effect of earthworm biomass on root biomass, volume, surface area, and length at the whole plant level. Results supported a systemic effect dependent on earthworm abundance. Modification of nutrient mineralization, soil physical structure, and/or the concentration of signal molecules could all be responsible for this systemic effect. 相似文献
47.
Sergey Ivanov Maria J. Harrison 《The Plant journal : for cell and molecular biology》2014,80(6):1151-1163
Medicago truncatula is widely used for analyses of arbuscular mycorrhizal (AM) symbiosis and nodulation. To complement the genetic and genomic resources that exist for this species, we generated fluorescent protein fusions that label the nucleus, endoplasmic reticulum, Golgi apparatus, trans‐Golgi network, plasma membrane, apoplast, late endosome/multivesicular bodies (MVB), transitory late endosome/ tonoplast, tonoplast, plastids, mitochondria, peroxisomes, autophagosomes, plasmodesmata, actin, microtubules, periarbuscular membrane (PAM) and periarbuscular apoplastic space (PAS) and expressed them from the constitutive AtUBQ10 promoter and the AM symbiosis‐specific MtBCP1 promoter. All marker constructs showed the expected expression patterns and sub‐cellular locations in M. truncatula root cells. As a demonstration of their utility, we used several markers to investigate AM symbiosis where root cells undergo major cellular alterations to accommodate their fungal endosymbiont. We demonstrate that changes in the position and size of the nuclei occur prior to hyphal entry into the cortical cells and do not require DELLA signaling. Changes in the cytoskeleton, tonoplast and plastids also occur in the colonized cells and in contrast to previous studies, we show that stromulated plastids are abundant in cells with developing and mature arbuscules, while lens‐shaped plastids occur in cells with degenerating arbuscules. Arbuscule development and secretion of the PAM creates a periarbuscular apoplastic compartment which has been assumed to be continuous with apoplast of the cell. However, fluorescent markers secreted to the periarbuscular apoplast challenge this assumption. This marker resource will facilitate cell biology studies of AM symbiosis, as well as other aspects of legume biology. 相似文献
48.
49.
Zabotina OA van de Ven WT Freshour G Drakakaki G Cavalier D Mouille G Hahn MG Keegstra K Raikhel NV 《The Plant journal : for cell and molecular biology》2008,56(1):101-115
The function of a putative xyloglucan xylosyltransferase from Arabidopsis thaliana (At1g74380; XXT5) was studied. The XXT5 gene is expressed in all plant tissues, with higher levels of expression in roots, stems and cauline leaves. A T-DNA insertion in the XXT5 gene generates a readily visible root hair phenotype (root hairs are shorter and form bubble-like extrusions at the tip), and also causes the alteration of the main root cellular morphology. Biochemical characterization of cell wall polysaccharides isolated from xxt5 mutant seedlings demonstrated decreased xyloglucan quantity and reduced glucan backbone substitution with xylosyl residues. Immunohistochemical analyses of xxt5 plants revealed a selective decrease in some xyloglucan epitopes, whereas the distribution patterns of epitopes characteristic for other cell wall polysaccharides remained undisturbed. Transformation of xxt5 plants with a 35S::HA-XXT5 construct resulted in complementation of the morphological, biochemical and immunological phenotypes, restoring xyloglucan content and composition to wild-type levels. These data provide evidence that XXT5 is a xyloglucan alpha-1,6-xylosyltransferase, and functions in the biosynthesis of xyloglucan. 相似文献
50.
Salinomycin is a polyether antibiotic with properties of an ionophore, which is commonly used as cocciodiostatic drug and has been shown to be highly effective in the elimination of cancer stem cells (CSCs) both in vitro and in vivo. One important caveat for the potential clinical application of salinomycin is its marked neural and muscular toxicity. In the present study we show that salinomycin in concentrations effective against CSCs exerts profound toxicity towards both dorsal root ganglia as well as Schwann cells. This toxic effect is mediated by elevated cytosolic Na+ concentrations, which in turn cause an increase of cytosolic Ca2+ by means of Na+/Ca2+ exchangers (NCXs) in the plasma membrane as well as the mitochondria. Elevated Ca2+ then leads to calpain activation, which triggers caspase-dependent apoptosis involving caspases 12, 9 and 3. In addition, cytochrome c released from depolarized mitochondria directly activates caspase 9. Combined inhibition of calpain and the mitochondrial NCXs resulted in significantly decreased cytotoxicity and was comparable to caspase 3 inhibition. These findings improve our understanding of mechanisms involved in the pathogenesis of peripheral neuropathy and are important to devise strategies for the prevention of neurotoxic side effects induced by salinomycin. 相似文献