首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3425篇
  免费   267篇
  国内免费   123篇
  3815篇
  2024年   5篇
  2023年   46篇
  2022年   48篇
  2021年   73篇
  2020年   74篇
  2019年   100篇
  2018年   94篇
  2017年   61篇
  2016年   90篇
  2015年   138篇
  2014年   213篇
  2013年   265篇
  2012年   126篇
  2011年   157篇
  2010年   149篇
  2009年   188篇
  2008年   207篇
  2007年   243篇
  2006年   162篇
  2005年   170篇
  2004年   158篇
  2003年   133篇
  2002年   134篇
  2001年   63篇
  2000年   68篇
  1999年   61篇
  1998年   67篇
  1997年   74篇
  1996年   70篇
  1995年   67篇
  1994年   54篇
  1993年   49篇
  1992年   22篇
  1991年   33篇
  1990年   23篇
  1989年   21篇
  1988年   12篇
  1987年   11篇
  1986年   16篇
  1985年   13篇
  1984年   13篇
  1983年   12篇
  1982年   12篇
  1981年   8篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1973年   1篇
  1971年   1篇
  1950年   1篇
排序方式: 共有3815条查询结果,搜索用时 15 毫秒
61.
Human carboxylesterase 1 (hCES1) is an enzyme that plays an important role in hydrolysis of pharmaceuticals in the human liver. In this study, elucidation of the chiral recognition ability of hCES1 was attempted using indomethacin esters in which various chiral alcohols were introduced. Indomethacin was condensed with various chiral alcohols to synthesize indomethacin esters. The synthesized esters were hydrolyzed with a human liver microsome (HLM) solution and a human intestine microsome (HIM) solution. High hydrolytic rate and high stereoselectivity were confirmed in the hydrolysis reaction in the HLM solution but not in the HIM solution, and these indomethacin esters were thought to be hydrolyzed by hCES1. Next, these indomethacin esters were hydrolyzed in recombinant hCES1 solution and the hydrolysis rates of the esters were calculated. The stereoselectivity confirmed in HLM solution was also confirmed in the hCES1 solution. In the hydrolysis reaction of esters in which a phenyl group is bonded next to the ester, the Vmax value of the (R) form was 10 times larger than that of the (S) form.  相似文献   
62.
The DNA binding domain (DBD) of gamma delta resolvase (residues 141-183) is responsible for the interaction of this site-specific DNA recombinase with consensus site DNA within the gamma delta transposable element in Escherichia coli. Based on chemical-shift comparisons, the proteolytically isolated DBD displays side-chain interactions within a hydrophobic core that are highly similar to those of this domain when part of the intact enzyme (Liu T, Liu DJ, DeRose EF, Mullen GP, 1993, J Biol Chem 268:16309-16315). The structure of the DBD in solution has been determined using restraints obtained from 2-dimensional proton NMR data and is represented by 17 conformers. Experimental restraints included 458 distances based on analysis of nuclear Overhauser effect connectivities, 17 phi and chi 1 torsion angles based on analysis of couplings, and 17 backbone hydrogen bonds determined from NH exchange data. With respect to the computed average structure, these conformers display an RMS deviation of 0.67 A for the heavy backbone atoms and 1.49 A for all heavy atoms within residues 149-180. The DBD consists of 3 alpha-helices comprising residues D149-Q157, S162-T167, and R172-N183. Helix-2 and helix-3 form a backbone fold, which is similar to the canonical helix-turn-helix motif. The conformation of the NH2-terminal residues, G141-R148, appears flexible in solution. A hydrophobic core is formed by side chains donated by essentially all hydrophobic residues within the helices and turns. Helix-1 and helix-3 cross with a right-handed folding topology. The structure is consistent with a mechanism of DNA binding in which contacts are made by the hydrophilic face of helix-3 in the major groove and the amino-terminal arm in the minor groove. This structure represents an important step toward analysis of the mechanism of DNA interaction by gamma delta resolvase and provides initial structure-function comparisons among the divergent DBDs of related resolvases and invertases.  相似文献   
63.
竺乐庆  张真 《昆虫学报》2013,56(11):1335-1341
【目的】为了给林业、 农业或植物检疫等行业人员提供一种方便快捷的昆虫种类识别方法, 本文提出了一种新颖的鳞翅目昆虫图像自动识别方法。【方法】首先通过预处理对采集的昆虫标本图像去除背景, 分割出双翅, 并对翅图像的位置进行校正。然后把校正后的翅面分割成多个超像素, 用每个超像素的l, a, b颜色及x, y坐标平均值作为其特征数据。接下来用稀疏编码(SC)算法训练码本、 生成编码并汇集成特征向量训练量化共轭梯度反向传播神经网络(SCG BPNN), 并用得到的BPNN进行分类识别。【结果】该方法对包含576个样本的昆虫图像的数据库进行了测试, 取得了高于99%的识别正确率, 并有理想的时间性能、 鲁棒性及稳定性。【结论】实验结果证明了本文方法在识别鳞翅目昆虫图像上的有效性。  相似文献   
64.
Mangshan pitviper, Protobothrops mangshanensis(formerly Zhaoermia mangshanensis) is endemic to China. Unfortunately, due to the decreasing size of its wild populations, this snake has been listed as critically endangered. Research carried out on the Mangshan pitviper's population ecology and captive reproduction has revealed that the unique head patch patterns of different individuals may potentially be used as a noninvasive recognition biometric character. We collected head patch pattern images of 40 individuals of P. mangshanensis between 1994 and 2011. By comparing each pitviper's head patch pattern, we found that the head patch pattern of individual snakes was different and unique. Additionally, we observed and recorded the head patch pattern characters of four adults and five juveniles before and after ecdysis. Our findings confirmed that head patch patterns of Mangshan pitvipers are unique and stable, remaining unchanged after ecdysis. Thus, individuals can be quickly identified by examining the head patch pattern within a specific recognition area on the head. This method may be useful for noninvasive individual recognition in many other species that display color patch pattern variations, especially in studies of endangered species where the use of invasive marking techniques is undesirable.  相似文献   
65.
《遗传学报》2021,48(6):463-472
Centromeres are chromosomal loci marked by histone variant Cen H3(centromeric histone H3) and essential for genomic stability and cell division. The budding yeast E3 ubiquitin ligase Psh1 selectively recognizes the yeast Cen H3(Cse4) for ubiquitination and controls the cellular level of Cse4 for proteolysis,but the underlying mechanism remains largely unknown. Here, we show that Psh1 uses a Cse4-binding domain(CBD, residues 1-211) to interact with Cse4-H4 instead of H3-H4, yielding a dissociation constant(K_d) of 27 nM. Psh1 recognizes Cse4-specific residues in the L1 loop and a2 helix to ensure Cse4 binding and ubiquitination. We map the Psh1-binding region of Cse4-H4 and identify a wide range of Cse4-specific residues required for the Psh1-mediated Cse4 recognition and ubiquitination. Further analyses reveal that histone chaperone Scm3 can impair Cse4 ubiquitination by abrogating Psh1-Cse4 binding. Together, our study reveals a novel Cse4-binding mode distinct from those of known Cen H3 chaperones and elucidates the mechanism by which Scm3 competes with Psh1 for Cse4 binding.  相似文献   
66.
基于复合叶片特征的计算机植物识别方法   总被引:1,自引:0,他引:1  
该文探讨如何根据植物的叶片特征,利用图像处理和机器学习的方法对植物进行分类。鉴于现有的叶片分类系统多采用单一的特征,如几何和纹理等,仅能在小规模数据库上得到较好的结果。然而,随着样本种类的增多,单一特征在不同种类叶片之间的相似性非常明显,致使分类正确率降低。该研究使用多种复合特征,并提出了原创的预处理方法以及宽度、叶缘频率特征,较传统的几何特征更为详尽。研究结果显示,复合特征可以有效避免算法过拟合问题,使之适用于更大的数据库。通过提取21类植物的叶片宽度、颜色、叶缘和纹理共292维特征,对1 915张数字图像进行了分类,正确率达到93%,并分析了各类特征对分类结果的影响。研究结果表明,在不影响分类正确率前提下,可将特征减少到约100维。  相似文献   
67.
Most hypotheses concerning the evolution of insect-plant relationships are based on the assumptions that, (1) phytophagous insects reduce plant fitness, and that (2) insect-plant relationships are the result of unconstrained selection. It can be shown, however, that there is little evidence to support these assumptions. As an alternative, it is proposed that the evolution of insect-plant relationships results primarily from autonomous evolutionary events; namely from heritable functional changes within the insects' nervous system that determine plant recognition and ultimately host plant specificity. These changes cannot be evoked by selective ecological agents. They originate from intrinsic changes (mutationssensu lato) within the insect genome. Ecological factors play a secondary role: by either supporting or preventing the establishment of the new genotype with the novel food preference. This paper has been dedicated in warm friendship to Professor Louis M. Schoonhoven, the leading scientist in sensory physiology of phytophagous insects, on the occasion of his 60th birthday.  相似文献   
68.
Most signal transduction pathways in humans are regulated by protein kinases through phosphorylation of their protein substrates. Typical eukaryotic protein kinases are of two major types: those that phosphorylate‐specific sequences containing tyrosine (~90 kinases) and those that phosphorylate either serine or threonine (~395 kinases). The highly conserved catalytic domain of protein kinases comprises a smaller N lobe and a larger C lobe separated by a cleft region lined by the activation loop. Prior studies find that protein tyrosine kinases recognize peptide substrates by binding the polypeptide chain along the C‐lobe on one side of the activation loop, while serine/threonine kinases bind their substrates in the cleft and on the side of the activation loop opposite to that of the tyrosine kinases. Substrate binding structural studies have been limited to four families of the tyrosine kinase group, and did not include Src tyrosine kinases. We examined peptide‐substrate binding to Src using paramagnetic‐relaxation‐enhancement NMR combined with molecular dynamics simulations. The results suggest Src tyrosine kinase can bind substrate positioning residues C‐terminal to the phosphoacceptor residue in an orientation similar to serine/threonine kinases, and unlike other tyrosine kinases. Mutagenesis corroborates this new perspective on tyrosine kinase substrate recognition. Rather than an evolutionary split between tyrosine and serine/threonine kinases, a change in substrate recognition may have occurred within the TK group of the human kinome. Protein tyrosine kinases have long been therapeutic targets, but many marketed drugs have deleterious off‐target effects. More accurate knowledge of substrate interactions of tyrosine kinases has the potential for improving drug selectivity.  相似文献   
69.
70.
Molecular dynamics (MD) simulations were performed for investigating the role of Gln50 in the engrailed homeodomain-DNA recognition. Employing the crystal structure of free engrailed homeodomain and homeodomain-DNA complex as a starting structure, we carried out MD simulations of: (i) the complex between engrailed homeodomain and a 20 base-pair DNA containing TAATTA core sequence; (ii) the free engrailed homeodomain. The simulations show that homeodomain flexibility does not depend on its ligation state. The engrailed homeodomain shows similar flexibility, and the recognition helix-3 shows very similar characteristic of high rigidity and limited conformational space in two complexation states. At the same time, DNA structure has also no obvious conformational fluctuations. These results preclude the possibility of the side chain of Gln50 forming direct hydrogen bonds to the core DNA bases. MD simulations confirm a few well-conserved sites for water-mediated hydrogen bonds from protein to DNA are occupied by water molecules, and Gln50 interacts with corresponding core DNA bases through water-mediated hydrogen bonds. So Gln50 plays a relatively modest role in determining the affinity and specificity of the engrailed homeodomain. In addition, the electrostatic interaction between homeodomain and phosphate backbone of the DNA is a main factor for N- and C-terminal arm becoming ordered upon DNA binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号