首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   572篇
  免费   95篇
  国内免费   169篇
  2024年   7篇
  2023年   22篇
  2022年   16篇
  2021年   30篇
  2020年   39篇
  2019年   41篇
  2018年   39篇
  2017年   27篇
  2016年   41篇
  2015年   34篇
  2014年   32篇
  2013年   36篇
  2012年   36篇
  2011年   25篇
  2010年   33篇
  2009年   33篇
  2008年   47篇
  2007年   45篇
  2006年   39篇
  2005年   39篇
  2004年   19篇
  2003年   20篇
  2002年   27篇
  2001年   26篇
  2000年   14篇
  1999年   12篇
  1998年   12篇
  1997年   7篇
  1996年   7篇
  1995年   5篇
  1994年   6篇
  1993年   6篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1958年   1篇
排序方式: 共有836条查询结果,搜索用时 15 毫秒
51.
52.
53.
We examined the hypothesis that genotypic variation among populations of commonly co‐occurring phreatophytic trees (Populus fremontii, Salix gooddingii) and the shrub (Salix exigua) regulates aboveground net primary productivity (ANPP) at a hot site at the edge of the species’ distribution. We used a provenance trial in which replicated genotypes from populations varying in mean annual temperature were transplanted to a common garden adjacent to the Lower Colorado River in southeastern California. The garden environment represented an extreme maximum temperature for the study species. Four major findings emerged: (1) Genotypic variation in ANPP was significant for all species with broad‐sense heritability (H2) across populations of 0.11, 0.13, and 0.10 for P. fremontii, S. gooddingii, and S. exigua, respectively, and within‐population H2 ranging from 0.00 to 0.25, 0.00 to 0.44, and 0.02 to 0.21, respectively. (2) Population ANPP decreased linearly as mean annual maximum temperature (MAMT) transfer distance increased for both P. fremontii (r2 = 0.64) and S. gooddingii (r2 = 0.37), whereas it did not change for S. exigua; (3) Populations with similar MAMT to that of the common garden were 1.5 and 1.2 times more productive than populations with 5.0 °C MAMT transfer distances for P. fremontii and S. gooddingii, respectively; and (4) Variation in regression slopes among species for the relationship between ANPP and MAMT indicate species‐specific responses to temperature. As these plant species characterize a threatened habitat type and support a diverse community that includes endangered species, ecosystem restoration programs should consider using both local genotypes and productive genotypes from warmer environments to maximize productivity of riparian ecosystems in the face of global climate change.  相似文献   
54.
Evaluating the success of restoration projects requires well‐designed studies. Among the decisions that need to be made are what taxonomic groups to study and when to conduct the monitoring. To explore how these decisions can influence assessments of restoration success, we examined species richness and composition data collected over several years on different terrestrial fauna (landbirds, rodents, bees, and beetles) at Sacramento River restoration and remnant riparian sites. Our selection of study organisms enabled us to ask whether variability in species richness among restoration sites is less for vagile taxa than for sedentary taxa, and if invertebrates display greater variability among sites than vertebrates. Our results demonstrate that responses to restoration can vary depending upon the season when it is assessed, and the taxa that are studied. For all taxa except bees, there was considerable variability in the relative performance of taxa at restoration sites from one sampling date to the next, such that the relative ranking of the sites often changed dramatically. Comparisons of β ‐diversity (variability in species richness across sites) revealed that certain taxonomic groups were more spatially variable in their response to restoration than others. Among vertebrates, sedentary taxa (rodents) had significantly higher variability in species richness across sites than highly vagile taxa (birds); however, no such pattern was observed for invertebrates. Overall, vertebrates had lower variability than invertebrates, suggesting that evaluations of restoration success based on a few better‐known taxonomic groups (e.g., birds, rodents) may be inadequate to represent the biodiversity response of other groups (e.g., insects).  相似文献   
55.
56.
Across many dryland regions, historically grass‐dominated ecosystems have been encroached upon by woody‐plant species. In this paper, we compare ecosystem water and carbon dioxide (CO2) fluxes over a grassland, a grassland–shrubland mosaic, and a fully developed woodland to evaluate potential consequences of woody‐plant encroachment on important ecosystem processes. All three sites were located in the riparian corridor of a river in the southwest US. As such, plants in these ecosystems may have access to moisture at the capillary fringe of the near‐surface water table. Using fluxes measured by eddy covariance in 2003 we found that ecosystem evapotranspiration (ET) and net ecosystem exchange of carbon dioxide (NEE) increased with increasing woody‐plant dominance. Growing season ET totals were 407, 450, and 639 mm in the grassland, shrubland, and woodland, respectively, and in excess of precipitation by 227, 265, and 473 mm. This excess was derived from groundwater, especially during the extremely dry premonsoon period when this was the only source of moisture available to plants. Access to groundwater by the deep‐rooted woody plants apparently decouples ecosystem ET from gross ecosystem production (GEP) with respect to precipitation. Compared with grasses, the woody plants were better able to use the stable groundwater source and had an increased net CO2 gain during the dry periods. This enhanced plant activity resulted in substantial accumulation of leaf litter on the soil surface that, during rainy periods, may lead to high microbial respiration rates that offset these photosynthetic fluxes. March–December (primary growing season) totals of NEE were ?63, ?212, and ?233 g C m?2 in the grassland, shrubland, and woodland, respectively. Thus, there was a greater disparity between ecosystem water use and the strength of the CO2 sink as woody plants increased across the encroachment gradient. Despite a higher density of woody plants and a greater plant productivity in the woodland than in the shrubland, the woodland produced a larger respiration response to rainfall that largely offset its higher photosynthetic potential. These data suggest that the capacity for woody plants to exploit water resources in riparian areas results in enhanced carbon sequestration at the expense of increased groundwater use under current climate conditions, but the potential does not scale specifically as a function of woody‐plant abundance. These results highlight the important roles of water sources and ecosystem structure on the control of water and carbon balances in dryland areas.  相似文献   
57.
Keystone Interactions: Salmon and Bear in Riparian Forests of Alaska   总被引:2,自引:2,他引:0  
The term “keystone species” is used to describe organisms that exert a disproportionately important influence on the ecosystems in which they live. Analogous concepts such as “keystone mutualism” and “mobile links” illustrate how, in many cases, the interactions of two or more species produce an effect greater than that of any one species individually. Because of their role in transporting nutrients from the ocean to river and riparian ecosystems, Pacific salmon (Oncorhynchus spp.) and brown bear (Ursus arctos) have been described as keystone species and mobile links, although few data are available to quantify the importance of this interaction relative to other nutrient vectors. Application of a mass balance model to data from a southwestern Alaskan stream suggests that nitrogen (N) influx to the riparian forest is significantly increased in the presence of both salmon and bear, but not by either species individually. The interactions of salmon and bear may provide up to 24% of riparian N budgets, but this percentage varies in time and space according to variations in salmon escapement, channel morphology and watershed vegetation characteristics, suggesting interdependence and functional redundancy among N sources. These findings illustrate the complexity of interspecific interactions, the importance of linkages across ecosystem boundaries and the necessity of examining the processes and interactions that shape ecological communities, rather than their specific component parts.  相似文献   
58.
The arrangement and composition of flowpath types within a given network are thought to govern its functioning. This concept assumes that different flowpath types are functionally distinct. We investigated this assumption in a fluvial ecosystem by comparing the riparian zone, parafluvial zone (in-channel gravel bars), and surface stream. We hypothesized that differences in advection, uptake, and sorption would render material cycles more (a) open and (b) mutable in the surface stream, whereas the converse would occur in the riparian zone, and an intermediate state would be seen in the intervening parafluvial zone. To test our first hypothesis, we predicted that spatial heterogeneity in solute concentrations would be least in the surface stream, greater in the parafluvial zone, and greatest in the riparian zone. Using a null model, we ascertained that this pattern was shown by all solute species we examined (nitrate, ammonium, total dissolved inorganic nitrogen [DIN], dissolved organic N, total dissolved N, soluble reactive phosphorus, dissolved organic carbon, and chloride). To test our second hypothesis, we predicted that temporal change in spatial heterogeneity would be greatest in the surface stream, less in the parafluvial zone, and least in the riparian zone. Nitrate, DIN, and chloride showed this pattern. In particular, surface stream inorganic N was less spatially variable following months of high rainfall. According to an extant hypothesis, these results suggest that inorganic N processing may be a stable function in this ecosystem. Other solute species did not support our second prediction, perhaps because their retention and release dynamics are influenced principally by geochemistry. Generally, our findings indicate that a geomorphic template can generate spatial patterns in ecosystem function, warranting an expansion of the spiraling framework to a variety of flowpath types.  相似文献   
59.
This study examined the activity, species richness, and species composition of the arbuscular mycorrhizal fungal (AMF) community of Populus-Salix stands on the Verde River (Arizona, USA), quantified patterns of AMF richness and colonization along complex floodplain gradients, and identified environmental variables responsible for structuring the AMF community. Samples from 61 Populus-Salix stands were analyzed for AMF and herbaceous composition, AMF colonization, gravimetric soil moisture, soil texture, per cent organic matter, pH, and concentrations of nitrate, bicarbonate phosphorus and exchangeable potassium. AMF species richness declined with stand age and distance from and elevation above the channel and was positively related to perennial species cover and richness and gravimetric soil moisture. Distance from and elevation above the active channel, forest age, annual species cover, perennial species richness, and exchangeable potassium concentration all played a role in structuring the AMF community in this riparian area. Most AMF species were found across a wide range of soil conditions, but a subset of species tended to occur more often in hydric areas. This group of riparian affiliate AMF species includes several not previously encountered in the surrounding Sonoran desert.  相似文献   
60.
Climate change will lead to more extreme precipitation and associated increase of flooding events of soils. This can turn these soils from a sink into a source of atmospheric methane. The latter will depend on the balance of microbial methane production and oxidation. In the present study, the structural and functional response of methane oxidizing microbial communities was investigated in a riparian flooding gradient. Four sites differing in flooding frequency were sampled and soil-physico-chemistry as well as methane oxidizing activities, numbers and community composition were assessed. Next to this, the active community members were determined by stable isotope probing of lipids. Methane consumption as well as population size distinctly increased with flooding frequency. All methane consumption parameters (activity, numbers, lipids) correlated with soil moisture, organic matter content, and conductivity. Methane oxidizing bacteria were present and activated quickly even in seldom flooded soils. However, the active species comprised only a few representatives belonging to the genera Methylobacter, Methylosarcina, and Methylocystis, the latter being active only in permanently or regularly flooded soils.This study demonstrates that soils exposed to irregular flooding harbor a very responsive methane oxidizing community that has the potential to mitigate methane produced in these soils. The number of active species is limited and dominated by one methane oxidizing lineage. Knowledge on the characteristics of these microbes is necessary to assess the effects of flooding of soils and subsequent methane cycling therein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号