首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   797篇
  免费   53篇
  国内免费   19篇
  2023年   16篇
  2022年   24篇
  2021年   37篇
  2020年   36篇
  2019年   40篇
  2018年   43篇
  2017年   37篇
  2016年   31篇
  2015年   34篇
  2014年   53篇
  2013年   85篇
  2012年   16篇
  2011年   32篇
  2010年   27篇
  2009年   30篇
  2008年   34篇
  2007年   36篇
  2006年   23篇
  2005年   19篇
  2004年   17篇
  2003年   21篇
  2002年   17篇
  2001年   16篇
  2000年   14篇
  1999年   10篇
  1998年   10篇
  1997年   13篇
  1996年   3篇
  1995年   6篇
  1994年   4篇
  1993年   11篇
  1992年   6篇
  1991年   7篇
  1990年   6篇
  1989年   11篇
  1988年   4篇
  1987年   5篇
  1986年   1篇
  1985年   4篇
  1984年   8篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有869条查询结果,搜索用时 15 毫秒
131.
细菌生物被膜是粘附于物体表面的由细菌细胞及其胞外物质组成的复杂膜样物聚集体,具有很强的耐药性和免疫逃逸能力。生物被膜内细菌的代谢活性、运动状态等与浮游细菌有明显区别。近年来,先进的显微成像技术结合新型图像处理方法,在研究细菌的运动、生理等方面发挥了重要作用。本文围绕生物被膜,概述了细菌显微追踪技术在其研究中的应用。主要从细菌的运动方式和生物被膜形成过程的调控两方面出发,介绍了在单细胞水平上利用该技术研究生物被膜的进展,包括细菌的游泳、蹭行、群集运动和多种信号通路调控下生物被膜的形成过程等,并展望了该技术在生物被膜其他相关研究领域的应用前景。  相似文献   
132.
Understanding macroevolutionary dynamics of trait evolution is an important endeavor in evolutionary biology. Ecological opportunity can liberate a trait as it diversifies through trait space, while genetic and selective constraints can limit diversification. While many studies have examined the dynamics of morphological traits, diverse morphological traits may yield the same or similar performance and as performance is often more proximately the target of selection, examining only morphology may give an incomplete understanding of evolutionary dynamics. Here, we ask whether convergent evolution of pad‐bearing lizards has followed similar evolutionary dynamics, or whether independent origins are accompanied by unique constraints and selective pressures over macroevolutionary time. We hypothesized that geckos and anoles each have unique evolutionary tempos and modes. Using performance data from 59 species, we modified Brownian motion (BM) and Ornstein–Uhlenbeck (OU) models to account for repeated origins estimated using Bayesian ancestral state reconstructions. We discovered that adhesive performance in geckos evolved in a fashion consistent with Brownian motion with a trend, whereas anoles evolved in bounded performance space consistent with more constrained evolution (an Ornstein–Uhlenbeck model). Our results suggest that convergent phenotypes can have quite distinctive evolutionary patterns, likely as a result of idiosyncratic constraints or ecological opportunities.  相似文献   
133.
Optical motion capture is commonly used in biomechanics to measure human kinematics. However, no studies have yet examined the accuracy of optical motion capture in a large capture volume (>100 m3), or how accuracy varies from the center to the extreme edges of the capture volume. This study measured the dynamic 3D errors of an optical motion capture system composed of 42 OptiTrack Prime 41 cameras (capture volume of 135 m3) by comparing the motion of a single marker to the motion reported by a ThorLabs linear motion stage. After spline interpolating the data, it was found that 97% of the capture area had error below 200 μm. When the same analysis was performed using only half (21) of the cameras, 91% of the capture area was below 200 μm of error. The only locations that exceeded this threshold were at the extreme edges of the capture area, and no location had a mean error exceeding 1 mm. When measuring human kinematics with skin-mounted markers, uncertainty of marker placement relative to underlying skeletal features and soft tissue artifact produce errors that are orders of magnitude larger than the errors attributed to the camera system itself. Therefore, the accuracy of this OptiTrack optical motion capture system was found to be more than sufficient for measuring full-body human kinematics with skin-mounted markers in a large capture volume (>100 m3).  相似文献   
134.
Ventral and dorsal streams are visual pathways deputed to transmit information from the photoreceptors of the retina to the lateral geniculate nucleus and then to the primary visual cortex (V1). Several studies investigated whether one pathway is more vulnerable than the other during development, and whether these streams develop at different rates. The results are still discordant. The aim of the present study was to understand the functionality of the dorsal and the ventral streams in two populations affected by different genetic disorders, Noonan syndrome (NS) and 22q11.2 deletion syndrome (22q11.2DS), and explore the possible genotype–phenotype relationships. ‘Form coherence’ abilities for the ventral stream and ‘motion coherence’ abilities for the dorsal stream were evaluated in 19 participants with NS and 20 participants with 22q11.2DS. Collected data were compared with 55 age‐matched controls. Participants with NS and 22q11.2DS did not differ in the form coherence task, and their performance was significantly lower than that of controls. However, in the motion coherence task, the group with NS and controls did not differ, and both obtained significantly higher scores than the group with 22q11.2DS. Our findings indicate that deficits in the dorsal stream are related to the specific genotype, and that in our syndromic groups the ventral stream is more vulnerable than the dorsal stream.  相似文献   
135.
136.
Protein motion is often the link between structure and function and a substantial fraction of proteins move through a domain hinge bending mechanism. Predicting the location of the hinge from a single structure is thus a logical first step towards predicting motion. Here, we describe ways to predict the hinge location by grouping residues with correlated normal-mode motions. We benchmarked our normal-mode based predictor against a gold standard set of carefully annotated hinge locations taken from the Database of Macromolecular Motions. We then compared it with three existing structure-based hinge predictors (TLSMD, StoneHinge, and FlexOracle), plus HingeSeq, a sequence-based hinge predictor. Each of these methods predicts hinges using very different sources of information-normal modes, experimental thermal factors, bond constraint networks, energetics, and sequence, respectively. Thus it is logical that using these algorithms together would improve predictions. We integrated all the methods into a combined predictor using a weighted voting scheme. Finally, we encapsulated all our results in a web tool which can be used to run all the predictors on submitted proteins and visualize the results.  相似文献   
137.
闪现滞后现象(flash—lag effect)是指运动物体旁闪现的物体在知觉中物体落后于运动物体的现象。对这个现象,有一种解释认为视网膜上对运动刺激的外推机制对闪现滞后现象有相当的贡献.用视网膜外推机制不再有效的二阶运动刺激取代前人实验中的一阶运动刺激来研究闪现滞后现象,发现在视网膜推断机制失效的情况下,闪现滞后现象并没有减小,而是和一阶运动刺激条件下的量相当。结果表明,视网膜上的加工机制并不是闪现滞后现象的主要原因,并提示闪现滞后现象的机制可能位于一、二阶运动加工通道的汇合阶段以上。  相似文献   
138.
Wenjun Zheng 《Proteins》2009,76(3):747-762
F1 ATPase, a rotary motor comprised of a central stalk ( γ subunit) enclosed by three α and β subunits alternately arranged in a hexamer, features highly cooperative binding and hydrolysis of ATP. Despite steady progress in biophysical, biochemical, and computational studies of this fascinating motor, the structural basis for cooperative ATPase involving its three catalytic sites remains not fully understood. To illuminate this key mechanistic puzzle, we have employed a coarse‐grained elastic network model to probe the allosteric couplings underlying the cyclic conformational transition in F1 ATPase at a residue level of detail. We will elucidate how ATP binding and product (ADP and phosphate) release at two catalytic sites are coupled with the rotation of γ subunit via various domain motions in α 3 β 3 hexamer (including intrasubunit hinge‐bending motions in β subunits and intersubunit rigid‐body rotations between adjacent α and β subunits). To this end, we have used a normal‐mode‐based correlation analysis to quantify the allosteric couplings of these domain motions to local motions at catalytic sites and the rotation of γ subunit. We have then identified key amino acid residues involved in the above couplings, some of which have been validated against past studies of mutated and γ ‐truncated F1 ATPase. Our finding strongly supports a binding change mechanism where ATP binding to the empty catalytic site triggers a series of intra‐ and intersubunit domain motions leading to ATP hydrolysis and product release at the other two closed catalytic sites. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
139.
It is well known that context influences our perception of visual motion direction. For example, spatial and temporal context manipulations can be used to induce two well-known motion illusions: direction repulsion and the direction after-effect (DAE). Both result in inaccurate perception of direction when a moving pattern is either superimposed on (direction repulsion), or presented following adaptation to (DAE), another pattern moving in a different direction. Remarkable similarities in tuning characteristics suggest that common processes underlie the two illusions. What is not clear, however, is whether the processes driving the two illusions are expressions of the same or different neural substrates. Here we report two experiments demonstrating that direction repulsion and the DAE are, in fact, expressions of different neural substrates. Our strategy was to use each of the illusions to create a distorted perceptual representation upon which the mechanisms generating the other illusion could potentially operate. We found that the processes mediating direction repulsion did indeed access the distorted perceptual representation induced by the DAE. Conversely, the DAE was unaffected by direction repulsion. Thus parallels in perceptual phenomenology do not necessarily imply common neural substrates. Our results also demonstrate that the neural processes driving the DAE occur at an earlier stage of motion processing than those underlying direction repulsion.  相似文献   
140.
We present a particle-based simulation study on two-component swarms where there exist two different types of groups in a swarm. Effects of different parameters between the two groups are studied systematically based on Langevin's equation. It is shown that the mass difference can introduce a protective behavior for the lighter members of the swarm in a vortex state. When the self-propelling strength is allowed to differ between two groups, it is observed that the swarm becomes spatially segregated and finally separated into two components at a certain critical value. We also investigate effects of different preferences for shelters on their collective decision making. In particular, it is found that the probability of selecting a shelter from the other varies sigmoidally as a function of the number ratio. The model is shown to describe the dynamics of the shelter choosing process of the cockroach–robot mixed group satisfactorily. It raises the possibility that the present model can be applied to the problems of pest control and fishing using robots and decoys.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号