首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15076篇
  免费   1248篇
  国内免费   1491篇
  17815篇
  2024年   28篇
  2023年   325篇
  2022年   460篇
  2021年   738篇
  2020年   769篇
  2019年   917篇
  2018年   766篇
  2017年   506篇
  2016年   525篇
  2015年   725篇
  2014年   1080篇
  2013年   1250篇
  2012年   809篇
  2011年   927篇
  2010年   718篇
  2009年   796篇
  2008年   731篇
  2007年   756篇
  2006年   659篇
  2005年   595篇
  2004年   509篇
  2003年   466篇
  2002年   394篇
  2001年   292篇
  2000年   242篇
  1999年   192篇
  1998年   167篇
  1997年   193篇
  1996年   179篇
  1995年   131篇
  1994年   123篇
  1993年   108篇
  1992年   110篇
  1991年   88篇
  1990年   89篇
  1989年   58篇
  1988年   58篇
  1987年   51篇
  1986年   29篇
  1985年   43篇
  1984年   42篇
  1983年   34篇
  1982年   38篇
  1981年   27篇
  1980年   16篇
  1979年   11篇
  1978年   10篇
  1977年   6篇
  1976年   8篇
  1974年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Function of RNA-binding protein Musashi-1 in stem cells   总被引:19,自引:0,他引:19  
Musashi is an evolutionarily conserved family of RNA-binding proteins that is preferentially expressed in the nervous system. The first member of the Musashi family was identified in Drosophila. This protein plays an essential role in regulating the asymmetric cell division of ectodermal precursor cells known as sensory organ precursor cells through the translational regulation of target mRNA. In the CNS of Drosophila larvae, however, Musashi is expressed in proliferating neuroblasts and likely has a different function. Its probable mammalian homologue, Musashi-1, is a neural RNA-binding protein that is strongly expressed in fetal and adult neural stem cells (NSCs). Mammalian Musashi-1 augments Notch signaling through the translational repression of its target mRNA, m-Numb, thereby contributing to the self-renewal of NSCs. In addition to its functions in NSCs, the role of mammalian Musashi-1 protein in epithelial stem cells, including intestinal and mammary gland stem cells, is attracting increasing interest.  相似文献   
92.
Playing with bone and fat   总被引:15,自引:0,他引:15  
The relationship between bone and fat formation within the bone marrow microenvironment is complex and remains an area of active investigation. Classical in vitro and in vivo studies strongly support an inverse relationship between the commitment of bone marrow-derived mesenchymal stem cells or stromal cells to the adipocyte and osteoblast lineage pathways. In this review, we focus on the recent literature exploring the mechanisms underlying these differentiation events and discuss their implications relevant to osteoporosis and regenerative medicine.  相似文献   
93.
The adipose tissue-derived mesenchymal stem cells (ADMSCs) are extensively utilized in tissue engineering, regenerative medicine and cell therapy. ADMSCs can differentiate into cardiomyocytes, and it has been shown that over-expression of a cocktail of factors can induce ectopic heart formation and program cardiogenesis in ESCs. However, which genes are responsible for differentiation of ADMSCs into beating cardiomyocyte-like cells remains unknown. In this study we have shown that the combination of Gata4, Tbx5 and Baf60c is sufficient for inducing ADMSCs to form cardiomyocytes. It also appears that, while Gata4 and Baf60c are key inducers of myocardial differentiation, Tbx5 is essential for the ability of cardiac cells to contract. These findings provide additional experimental references for myocardial tissue engineering in the emerging field of cell-based therapy of heart diseases.  相似文献   
94.
The rat optic nerve is a useful model for stem cell regeneration research. Direct injection into the rat optic nerve allows delivery into the central nervous system in a minimally-invasive surgery without bone removal. This technique describes an approach to visualization and direct injection of the optic nerve following minor fascial dissection from the orbital ridge, using a conjunctival traction suture to gently pull the eye down and out. Representative examples of an injected optic nerve show successful injection of dyed beads.  相似文献   
95.
96.
外来植物紫茎泽兰18个种群的茎叶形态结构比较研究   总被引:7,自引:0,他引:7  
利用石蜡切片法结合光学显微镜观察了紫茎泽兰18个种群的茎叶形态结构。结果表明:各种群间茎和叶的形态结构均表现出一定的变化,其中茎的维管束束数、叶表皮的部分特征变化较明显。应用SPSS统计软件对叶表皮的特征分析后,发现种群间的气孔器密度、气孔器指数、气孔器长度、气孔器宽度、上下表皮细胞数目均随地理条件的变化而表现出明显差异。相关分析表明气孔器密度、气孔器指数与海拔高度呈正相关。但紫茎泽兰各种群间的叶表皮细胞形状无明显变化,均为无规则型,垂周壁式样均为浅波状深波状;气孔器类型均为无规则型。  相似文献   
97.
With the advancement in lineage‐specific differentiation from human pluripotent stem cells (hPSCs), downstream cell separation has now become a critical step to produce hPSC‐derived products. Since differentiation procedures usually result in a heterogeneous cell population, cell separation needs to be performed either to enrich the desired cell population or remove the undesired cell population. This article summarizes recent advances in separation processes for hPSC‐derived cells, including the standard separation technologies, such as magnetic‐activated cell sorting, as well as the novel separation strategies, such as those based on adhesion strength and metabolic flux. Specifically, the downstream bioprocessing flow and the identification of surface markers for various cell lineages are discussed. While challenges remain for large‐scale downstream bioprocessing of hPSC‐derived cells, the rational quality‐by‐design approach should be implemented to enhance the understanding of the relationship between process and the product and to ensure the safety of the produced cells.  相似文献   
98.
99.
Myotonic Dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults, characterized by a variety of multisystemic features and associated with cardiac anomalies. Among cardiac phenomena, conduction defects, ventricular arrhythmias, and dilated cardiomyopathy represent the main cause of sudden death in DM1 patients. Patient‐specific induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) represent a powerful in vitro model for molecular, biochemical, and physiological studies of disease in the target cells. Here, we used an Atomic Force Microscope (AFM) to measure the beating profiles of a large number of cells, organized in CM clusters (Beating Bodies, BBs), obtained from wild type (WT) and DM1 patients. We monitored the evolution over time of the frequency and intensity of the beating. We determined the variations between different BBs and over various areas of a single BB, caused by morphological and biomechanical variations. We exploited the AFM tip to apply a controlled force over the BBs, to carefully assess the biomechanical reaction of the different cell clusters over time, both in terms of beating frequency and intensity. Our measurements demonstrated differences between the WT and DM1 clusters highlighting, for the DM1 samples, an instability which was not observed in WT cells. We measured differences in the cellular response to the applied mechanical stimulus in terms of beating synchronicity over time and cell tenacity, which are in good agreement with the cellular behavior in vivo. Overall, the combination of hiPSC‐CMs with AFM characterization can become a new tool to study the collective movements of cell clusters in different conditions and can be extended to the characterization of the BB response to chemical and pharmacological stimuli.  相似文献   
100.
Although cancer stem cells (CSCs) have been recently identified in myeloid leukemia, published data on lymphoid malignancy have been sparse. T-acute lymphoblastic leukemia (T-ALL) is characterized by the abnormal proliferation of T-cell precursors and is generally aggressive. As CD34 is the only positive-selection marker for CSCs in T-ALL, we performed extensive analysis of CD markers in T-ALL cell lines. We found that some of the tested lines consisted of heterogeneous populations of cells with various levels of surface marker expression. In particular, a small subpopulation of CD90 (Thy-1) and CD110 (c-Mpl) were shown to correlate with stem cell properties both in vitro and in transplantation experiments. As these markers are expressed on hematopoietic stem cells, our results suggest that stem cell-like population are enriched in CD90+/CD110+ fraction and they are useful positive-selection markers for the isolation of CSCs in some cases of T-ALL.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号