首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   2篇
  158篇
  2024年   1篇
  2023年   1篇
  2022年   9篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2011年   2篇
  2010年   1篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1983年   4篇
  1982年   7篇
  1981年   1篇
  1980年   3篇
  1979年   8篇
  1978年   4篇
  1977年   6篇
  1976年   5篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
排序方式: 共有158条查询结果,搜索用时 15 毫秒
131.
We have characterized the genes encoding ribosomal proteins (r-proteins) as well as other translation-related factors of 15 eubacteria and four archaebacteria, and the genes for the mitochondrial r-proteins of Saccharomyces cerevisiae by using the complete genomic nucleotide sequence data of these organisms. In eubacteria, including two species of Mycoplasma, the operon structure of the r-protein genes is well conserved, while their relative orientation and chromosomal location are quite divergent. The operon structure of the r-protein genes in archaebacteria, on the other hand, is quite different from eubacteria and also among themselves. In addition, many archaebacterial r-proteins show similarity to rat cytoplasmic r-proteins. Nonetheless, characteristic features of several genes encoding proteins of functional importance are well conserved throughout the bacterial species including archaebacteria, as well as in S. cerevisiae. We searched for the genes encoding mitochondrial r-proteins in yeast by combining informatics and genetic experiments. Furthermore, we characterized some of the r-proteins genes by exchanging portions between Escherichia coli and S. cerevisiae and performed functional analysis of some of the genes from different evolutionary points of view. Our work may be extended towards phylogenetic analysis of organisms producing secondary metabolites of various sorts. Journal of Industrial Microbiology & Biotechnology (2001) 27, 163–169. Received 21 September 1999/ Accepted in revised form 22 September 2000  相似文献   
132.
We employed electron cryo‐tomography to visualize cytosolic ribosomes on the surface of mitochondria. Translation‐arrested ribosomes reveal the clustered organization of the TOM complex, corroborating earlier reports of localized translation. Ribosomes are shown to interact specifically with the TOM complex, and nascent chain binding is crucial for ribosome recruitment and stabilization. Ribosomes are bound to the membrane in discrete clusters, often in the vicinity of the crista junctions. This interaction highlights how protein synthesis may be coupled with transport. Our work provides unique insights into the spatial organization of cytosolic ribosomes on mitochondria.  相似文献   
133.
134.
rRNA was labelled with RNase-gold complexes applied to ultrathin Lowicryl sections of excised Cucurbita pepo L. (zucchini) cotyledons grown in darkness. Benzylaminopurine-caused stimulation of cotyledon growth decreases the density of ribosomes in palisade cells despite stimulating rRNA synthesis. Abscisic acid inhibits RNA synthesis and transport, but does not visibly affect the number of pre-existing ribosomes in retarded growth cells. The amount of rRNA in the cells of 24 h treated cotyledons is rather consequence of the growth rate than its leading factor.  相似文献   
135.
mRNA translation plays a central role in the regulation of gene expression and represents the most energy consuming process in mammalian cells. Accordingly, dysregulation of mRNA translation is considered to play a major role in a variety of pathological states including cancer. Ribosomes also host chaperones, which facilitate folding of nascent polypeptides, thereby modulating function and stability of newly synthesized polypeptides. In addition, emerging data indicate that ribosomes serve as a platform for a repertoire of signaling molecules, which are implicated in a variety of post-translational modifications of newly synthesized polypeptides as they emerge from the ribosome, and/or components of translational machinery. Herein, a well-established method of ribosome fractionation using sucrose density gradient centrifugation is described. In conjunction with the in-house developed “anota” algorithm this method allows direct determination of differential translation of individual mRNAs on a genome-wide scale. Moreover, this versatile protocol can be used for a variety of biochemical studies aiming to dissect the function of ribosome-associated protein complexes, including those that play a central role in folding and degradation of newly synthesized polypeptides.  相似文献   
136.
Apicomplexan protists such as Plasmodium and Toxoplasma contain a mitochondrion and a relic plastid (apicoplast) that are sites of protein translation. Although there is emerging interest in the partitioning and function of translation factors that participate in apicoplast and mitochondrial peptide synthesis, the composition of organellar ribosomes remains to be elucidated. We carried out an analysis of the complement of core ribosomal protein subunits that are encoded by either the parasite organellar or nuclear genomes, accompanied by a survey of ribosome assembly factors for the apicoplast and mitochondrion. A cross-species comparison with other apicomplexan, algal and diatom species revealed compositional differences in apicomplexan organelle ribosomes and identified considerable reduction and divergence with ribosomes of bacteria or characterized organelle ribosomes from other organisms. We assembled structural models of sections of Plasmodium falciparum organellar ribosomes and predicted interactions with translation inhibitory antibiotics. Differences in predicted drug–ribosome interactions with some of the modelled structures suggested specificity of inhibition between the apicoplast and mitochondrion. Our results indicate that Plasmodium and Toxoplasma organellar ribosomes have a unique composition, resulting from the loss of several large and small subunit proteins accompanied by significant sequence and size divergences in parasite orthologues of ribosomal proteins.  相似文献   
137.
RNA trafficking in axons   总被引:1,自引:0,他引:1  
A substantial number of studies over a period of four decades have indicated that axons contain mRNAs and ribosomes, and are metabolically active in synthesizing proteins locally. For the most part, little attention has been paid to these findings until recently when the concept of targeting of specific mRNAs and translation in subcellular domains in polarized cells emerged to contribute to the likelihood and acceptance of mRNA targeting to axons as well. Trans-acting factor proteins bind to cis-acting sequences in the untranslated region of mRNAs integrated in ribonucleoprotein (RNPs) complexes determine its targeting in neurons. In vitro studies in immature axons have shown that molecular motors proteins (kinesins and myosins) associate to RNPs suggesting they would participate in its transport to growth cones. Tau and actin mRNAs are transported as RNPs, and targeted to axons as well as ribosomes. Periaxoplasmic ribosomal plaques (PARPs), which are systematically distributed discrete peripheral ribosome-containing, actin-rich formations in myelinated axons, also are enriched with actin and myosin Va mRNAs and additional regulatory proteins. The localization of mRNAs in PARPs probably means that PARPs are local centers of translational activity, and that these domains are the final destination in the axon compartment for targeted macromolecular traffic originating in the cell body. The role of glial cells as a potentially complementary source of axonal mRNAs and ribosomes is discussed in light of early reports and recent ultrastructural observations related to the possibility of glial-axon trans-endocytosis.  相似文献   
138.
The proteins of the cytoplasmic ribosomes isolated from dry embryos of Gateway barley and its virescens mutant were compared by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). The monosomes of both the lines gave similar patterns with 60 basic proteins. Upon dissociation of the monosomes, for the mutant, the basic proteins of the large subunits migrated more slowly than those of the normal and lacked three proteins but had three additional spots. Also, the proteins of the small subunits differed. The mutant lacked three of the proteins present in the normal but had three additional spots. Therefore, the large and small subunits contained a total of 34 and 41 basic proteins, respectively, in both the lines. There were several spots with identical electrophoretic mobilities in the small and large subunits of these two lines.  相似文献   
139.
Many integral membrane proteins are produced by translocon-associated ribosomes. The assembly of ribosomes translating membrane proteins on the translocons is mediated by a conserved system, composed of the signal recognition particle and its receptor (FtsY in Escherichia coli). FtsY is a peripheral membrane protein, and its role late during membrane protein targeting involves interactions with the translocon. However, earlier stages in the pathway have remained obscure, namely, how FtsY targets the membrane in vivo and where it initially docks. Our previous studies have demonstrated co-translational membrane-targeting of FtsY translation intermediates and identified a nascent FtsY targeting-peptide. Here, in a set of in vivo experiments, we utilized tightly stalled FtsY translation intermediates, pull-down assays and site-directed cross-linking, which revealed FtsY-nascent chain-associated proteins in the cytosol and on the membrane. Our results demonstrate interactions between the FtsY-translating ribosomes and cytosolic chaperones, which are followed by directly docking on the translocon. In support of this conclusion, we show that translocon over-expression increases dramatically the amount of membrane associated FtsY-translating ribosomes. The co-translational contacts of the FtsY nascent chains with the translocon differ from its post-translational contacts, suggesting a major structural maturation process. The identified interactions led us to propose a model for how FtsY may target the membrane co-translationally. On top of our past observations, the current results may add another tier to the hypothesis that FtsY acts stoichiometrically in targeting ribosomes to the membrane in a constitutive manner.  相似文献   
140.
Nucleotides of 28S rRNA involved in binding of the human 80S ribosome with acceptor ends of the A site and the P site tRNAs were determined using two complementary approaches, namely, cross-linking with application of tRNAAsp analogues substituted with 4-thiouridine in position 75 or 76 and hydroxyl radical footprinting with the use of the full sized tRNA and the tRNA deprived of the 3′-terminal trinucleotide CCA. In general, these 28S rRNA nucleotides are located in ribosomal regions homologous to the A, P and E sites of the prokaryotic 50S subunit. However, none of the approaches used discovered interactions of the apex of the large rRNA helix 80 with the acceptor end of the P site tRNA typical with prokaryotic ribosomes. Application of the results obtained to available atomic models of 50S and 60S subunits led us to a conclusion that the A site tRNA is actually present in both A/A and A/P states and the P site tRNA in the P/P and P/E states. Thus, the present study gives a biochemical confirmation of the data on the structure and dynamics of the mammalian ribosomal pretranslocation complex obtained with application of cryo-electron microscopy and single-molecule FRET [Budkevich et al., 2011]. Moreover, in our study, particular sets of 28S rRNA nucleotides involved in oscillations of tRNAs CCA-termini between their alternative locations in the mammalian 80S ribosome are revealed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号