全文获取类型
收费全文 | 1002篇 |
免费 | 65篇 |
国内免费 | 50篇 |
专业分类
1117篇 |
出版年
2024年 | 6篇 |
2023年 | 35篇 |
2022年 | 54篇 |
2021年 | 66篇 |
2020年 | 25篇 |
2019年 | 37篇 |
2018年 | 53篇 |
2017年 | 30篇 |
2016年 | 29篇 |
2015年 | 44篇 |
2014年 | 60篇 |
2013年 | 66篇 |
2012年 | 37篇 |
2011年 | 62篇 |
2010年 | 59篇 |
2009年 | 52篇 |
2008年 | 64篇 |
2007年 | 47篇 |
2006年 | 27篇 |
2005年 | 39篇 |
2004年 | 36篇 |
2003年 | 35篇 |
2002年 | 23篇 |
2001年 | 15篇 |
2000年 | 12篇 |
1999年 | 10篇 |
1998年 | 11篇 |
1997年 | 4篇 |
1996年 | 7篇 |
1995年 | 4篇 |
1994年 | 8篇 |
1993年 | 4篇 |
1992年 | 3篇 |
1991年 | 4篇 |
1990年 | 1篇 |
1989年 | 4篇 |
1988年 | 6篇 |
1987年 | 4篇 |
1985年 | 3篇 |
1984年 | 9篇 |
1983年 | 5篇 |
1982年 | 4篇 |
1981年 | 5篇 |
1980年 | 2篇 |
1979年 | 3篇 |
1978年 | 1篇 |
1975年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有1117条查询结果,搜索用时 15 毫秒
71.
72.
Ghader Molavi Nasser Samadi Elaheh Zadeh Hosseingholi 《Journal of cellular physiology》2019,234(6):8327-8341
“Moonlighting protein” is a term used to define a single protein with multiple functions and different activities that are not derived from gene fusions, multiple RNA splicing, or the proteolytic activity of promiscuous enzymes. Different proteinous constituents of ribosomes have been shown to have important moonlighting extra-ribosomal functions. In this review, we introduce the impact of key moonlight ribosomal proteins and dependent signal transduction in the initiation and progression of various cancers. As a future perspective, the potential role of these moonlight ribosomal proteins in the diagnosis, prognosis, and development of novel strategies to improve the efficacy of therapies for human cancers has been suggested. 相似文献
73.
74.
75.
76.
The role of human ribosomal proteins in the maturation of rRNA and ribosome production 总被引:2,自引:0,他引:2
Robledo S Idol RA Crimmins DL Ladenson JH Mason PJ Bessler M 《RNA (New York, N.Y.)》2008,14(9):1918-1929
Production of ribosomes is a fundamental process that occurs in all dividing cells. It is a complex process consisting of the coordinated synthesis and assembly of four ribosomal RNAs (rRNA) with about 80 ribosomal proteins (r-proteins) involving more than 150 nonribosomal proteins and other factors. Diamond Blackfan anemia (DBA) is an inherited red cell aplasia caused by mutations in one of several r-proteins. How defects in r-proteins, essential for proliferation in all cells, lead to a human disease with a specific defect in red cell development is unknown. Here, we investigated the role of r-proteins in ribosome biogenesis in order to find out whether those mutated in DBA have any similarities. We depleted HeLa cells using siRNA for several individual r-proteins of the small (RPS6, RPS7, RPS15, RPS16, RPS17, RPS19, RPS24, RPS25, RPS28) or large subunit (RPL5, RPL7, RPL11, RPL14, RPL26, RPL35a) and studied the effect on rRNA processing and ribosome production. Depleting r-proteins in one of the subunits caused, with a few exceptions, a decrease in all r-proteins of the same subunit and a decrease in the corresponding subunit, fully assembled ribosomes, and polysomes. R-protein depletion, with a few exceptions, led to the accumulation of specific rRNA precursors, highlighting their individual roles in rRNA processing. Depletion of r-proteins mutated in DBA always compromised ribosome biogenesis while affecting either subunit and disturbing rRNA processing at different levels, indicating that the rate of ribosome production rather than a specific step in ribosome biogenesis is critical in patients with DBA. 相似文献
77.
78.
Recent studies have demonstrated that impaired protein synthesis occurs in several neurodegenerative conditions associated with oxidative stress. Studies have also demonstrated that administration of oxidative stressors is sufficient to impair different and discrete regulatory aspects of protein synthesis in neural cells, with the majority of these studies focused on the effects of oxidative stressors towards initiation factors. Currently, little is known with regards to oxidative stress effects on the rates of RNA- and protein-synthesis, or the relationship between oxidant-induced impairments in RNA-/protein-synthesis to subsequent neuron death. In the present study, we demonstrate that administration of an oxidative stressor (hydrogen peroxide) induces a significant and time-dependent decrease in both RNA- and protein-synthesis in primary neurons and neural SH-SY5Y cells. Increases in RNA oxidation and disruption of ribosome complexes were selectively observed following the longer durations of oxidant exposure. Significant correlations between the loss of RNA- and protein-synthesis and the amount of oxidant-induced neuron death were also observed. Interestingly, the addition of a protein synthesis inhibitor (cycloheximide) did not significantly alter the amount of neuron death induced by the oxidative stressor. These data demonstrate that oxidant exposure promotes a time-dependent decrease in both RNA- and protein-synthesis in neurons, and demonstrate a role for elevations in RNA oxidation and ribosome dysfunction as potential mediators of impaired protein synthesis. These data also suggest that there is a complex relationship between the ability of oxidative stressors to modulate RNA- and protein-synthesis, and the ability of oxidative stressors to ultimately induce neuron death. 相似文献
79.
Hasan Demirci Leyi Wang Frank V. Murphy IV Eileen L. Murphy Jennifer F. Carr Scott C. Blanchard Gerwald Jogl Albert E. Dahlberg Steven T. Gregory 《RNA (New York, N.Y.)》2013,19(12):1791-1801
The ribosome decodes mRNA by monitoring the geometry of codon–anticodon base-pairing using a set of universally conserved 16S rRNA nucleotides within the conformationally dynamic decoding site. By applying single-molecule FRET and X-ray crystallography, we have determined that conditional-lethal, streptomycin-dependence mutations in ribosomal protein S12 interfere with tRNA selection by allowing conformational distortions of the decoding site that impair GTPase activation of EF-Tu during the tRNA selection process. Distortions in the decoding site are reversed by streptomycin or by a second-site suppressor mutation in 16S rRNA. These observations encourage a refinement of the current model for decoding, wherein ribosomal protein S12 and the decoding site collaborate to optimize codon recognition and substrate discrimination during the early stages of the tRNA selection process. 相似文献
80.
Jill A. Dembowski Madhumitha Ramesh C. Joel McManus John L. Woolford Jr. 《RNA (New York, N.Y.)》2013,19(12):1639-1647
Eukaryotic ribosome assembly requires over 200 assembly factors that facilitate rRNA folding, ribosomal protein binding, and pre-rRNA processing. One such factor is Rlp7, an essential RNA binding protein required for consecutive pre-rRNA processing steps for assembly of yeast 60S ribosomal subunits: exonucleolytic processing of 27SA3 pre-rRNA to generate the 5′ end of 5.8S rRNA and endonucleolytic cleavage of the 27SB pre-rRNA to initiate removal of internal transcribed spacer 2 (ITS2). To better understand the functions of Rlp7 in 27S pre-rRNA processing steps, we identified where it crosslinks to pre-rRNA. We found that Rlp7 binds at the junction of ITS2 and the ITS2-proximal stem, between the 3′ end of 5.8S rRNA and the 5′ end of 25S rRNA. Consistent with Rlp7 binding to this neighborhood during assembly, two-hybrid and affinity copurification assays showed that Rlp7 interacts with other assembly factors that bind to or near ITS2 and the proximal stem. We used in vivo RNA structure probing to demonstrate that the proximal stem forms prior to Rlp7 binding and that Rlp7 binding induces RNA conformational changes in ITS2 that may chaperone rRNA folding and regulate 27S pre-rRNA processing. Our findings contradict the hypothesis that Rlp7 functions as a placeholder for ribosomal protein L7, from which Rlp7 is thought to have evolved in yeast. The binding site of Rlp7 is within eukaryotic-specific RNA elements, which are not found in bacteria. Thus, we propose that Rlp7 coevolved with these RNA elements to facilitate eukaryotic-specific functions in ribosome assembly and pre-rRNA processing. 相似文献