首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1000篇
  免费   65篇
  国内免费   51篇
  2024年   6篇
  2023年   34篇
  2022年   54篇
  2021年   66篇
  2020年   25篇
  2019年   37篇
  2018年   53篇
  2017年   30篇
  2016年   29篇
  2015年   44篇
  2014年   60篇
  2013年   66篇
  2012年   37篇
  2011年   62篇
  2010年   59篇
  2009年   52篇
  2008年   64篇
  2007年   47篇
  2006年   27篇
  2005年   39篇
  2004年   36篇
  2003年   35篇
  2002年   23篇
  2001年   15篇
  2000年   12篇
  1999年   10篇
  1998年   11篇
  1997年   4篇
  1996年   7篇
  1995年   4篇
  1994年   8篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   4篇
  1988年   6篇
  1987年   4篇
  1985年   3篇
  1984年   9篇
  1983年   5篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有1116条查询结果,搜索用时 31 毫秒
61.
62.
We characterized the effects of classical erythromycin resistance mutations in ribosomal proteins L4 and L22 of the large ribosomal subunit on the kinetics of erythromycin binding. Our data are consistent with a mechanism in which the macrolide erythromycin enters and exits the ribosome through the nascent peptide exit tunnel, and suggest that these mutations both impair passive transport through the tunnel and distort the erythromycin‐binding site. The growth‐inhibitory action of erythromycin was characterized for bacterial populations with wild‐type and L22‐mutated ribosomes in drug efflux pump deficient and proficient backgrounds. The L22 mutation conferred reduced erythromycin susceptibility in the drug efflux pump proficient, but not deficient, background. This ‘masking’ of drug resistance by pump deficiency was reproduced by modelling with input data from our biochemical experiments. We discuss the general principles behind the phenomenon of drug resistance ‘masking’, and highlight its potential importance for slowing down the evolution of drug resistance among pathogens.  相似文献   
63.
Neurodevelopmental defects in humans represent a clinically heterogeneous group of disorders. Here, we report the genetic and functional dissection of a multigenerational pedigree with an X-linked syndromic disorder hallmarked by microcephaly, growth retardation, and seizures. Using an X-linked intellectual disability (XLID) next-generation sequencing diagnostic panel, we identified a novel missense mutation in the gene encoding 60S ribosomal protein L10 (RPL10), a locus associated previously with autism spectrum disorders (ASD); the p.K78E change segregated with disease under an X-linked recessive paradigm while, consistent with causality, carrier females exhibited skewed X inactivation. To examine the functional consequences of the p.K78E change, we modeled RPL10 dysfunction in zebrafish. We show that endogenous rpl10 expression is augmented in anterior structures, and that suppression decreases head size in developing morphant embryos, concomitant with reduced bulk translation and increased apoptosis in the brain. Subsequently, using in vivo complementation, we demonstrate that p.K78E is a loss-of-function variant. Together, our findings suggest that a mutation within the conserved N-terminal end of RPL10, a protein in close proximity to the peptidyl transferase active site of the 60S ribosomal subunit, causes severe defects in brain formation and function.  相似文献   
64.
65.
The eukaryotic ribosomal protein S15 is a key component of the decoding site in contrast to its prokaryotic counterpart, S19p, which is located away from the mRNA binding track on the ribosome. Here, we determined the oligopeptide of S15 neighboring the A site mRNA codon on the human 80S ribosome with the use of mRNA analogues bearing perfluorophenyl azide-modified nucleotides in the sense or stop codon targeted to the 80S ribosomal A site. The protein was cross-linked to mRNA analogues in specific ribosomal complexes that were obtained in the presence of eRF1 in the experiments with mRNAs bearing stop codon. Digestion of modified S15 with various specific proteolytic agents followed by identification of the resulting modified oligopeptides showed that cross-link was in C-terminal fragment in positions 131–145, most probably, in decapeptide 131-PGIGATHSSR-140. The position of cross-linking site on the S15 protein did not depend on the nature of the A site-bound codon (sense or stop codon) and on the presence of polypeptide chain release factor eRF1 in the ribosomal complexes with mRNA analogues bearing a stop codon. The results indicate an involvement of the mentioned decapeptide in the formation of the ribosomal decoding site during elongation and termination of translation. Alignment of amino acid sequences of eukaryotic S15 and its prokaryotic counterpart, S19p from eubacteria and archaea, revealed that decapeptide PGIGATHSSR in positions 131–140 is strongly conserved in eukaryotes and has minor variations in archaea but has no homology with any sequence in C-terminal part of eubacterial S19p, which suggests involvement of the decapeptide in the translation process in a eukaryote-specific manner.  相似文献   
66.
67.
It is well established that the vast majority of proteins of all taxonomical groups and species are initiated by an AUG codon, translated into the amino acid methionine (Met). Many attempts were made to evaluate the importance of the sequences surrounding the initiation codon, mostly focusing on the RNA sequence. However, the role and importance of the amino acids following the initiating Met residue were rarely investigated, mostly in bacteria and fungi. Herein, we computationally examined the protein sequences of all major taxonomical groups represented in the Swiss-Prot database, and evaluated the preference of each group to specific amino acids at the positions directly following the initial Met. The results indicate that there is a species-specific preference for the second amino acid of the majority of protein sequences. Interestingly, the preference for a certain amino acid at the second position changes throughout evolution from lysine in prokaryotes, through serine in lower eukaryotes, to alanine in higher plants and animals.  相似文献   
68.
Teng CY  Wu TY 《Biotechnology letters》2007,29(7):1019-1024
The advantages of using traceable fluorescent protein (enhanced green fluorescent protein; EGFP) and a secretory alkaline phosphatase (SEAP) have been used to generate a reporter gene: the secretory fluorescent protein (SEFP). Sf21 cells, infected with the recombinant baculovirus containing the SEFP gene, revealed both traceable fluorescence and easily detectable alkaline phosphatase activity in the culture medium. The distribution of SEFP within the cells revealed that it was excluded from the nucleus, implying that the accumulation of SEFP in a secretory pathway, similar to that of the secretion signal-tagged FPs. Furthermore, the time- and dose-dependent release from the blockage of brefeldin A (BFA) confirmed that the secretion of SEFP was mediated by the secretion pathway and excluded leakage from viral infection. This SEFP reporter gene with traceable fluorescence and alkaline phosphatase activity may become a useful tool for studies on secretory protein production.  相似文献   
69.
Observation of intersubunit movement of the ribosome in solution using FRET   总被引:2,自引:0,他引:2  
Protein synthesis is believed to be a dynamic process, involving structural rearrangements of the ribosome. Cryo-EM reconstructions of certain elongation factor G (EF-G)-containing complexes have led to the proposal that translocation of tRNA and mRNA through the ribosome, from the A to P to E sites, is accompanied by a rotational movement between the two ribosomal subunits. Here, we have used F?rster resonance energy transfer (FRET) to monitor changes in the relative orientation of the ribosomal subunits in different complexes trapped at intermediate stages of translocation in solution. Binding of EF-G to the ribosome in the presence of the non-hydrolyzable GTP analogue GDPNP or GTP plus fusidic acid causes an increase in the efficiency of energy transfer between fluorophores introduced into proteins S11 in the 30 S subunit and L9 in the 50 S subunit, and a decrease in energy transfer between S6 and L9. Similar anti-correlated changes in energy transfer occur upon binding the GTP-requiring release factor RF3. These changes are consistent with the counter-clockwise rotation of the 30 S subunit relative to the 50 S subunit observed in cryo-EM studies. Reaction of ribosomal complexes containing the peptidyl-tRNA analogues N-Ac-Phe-tRNAPhe, N-Ac-Met-tRNAMet or f-Met-tRNAfMet with puromycin, conditions favoring movement of the resulting deacylated tRNAs into the P/E hybrid state, leads to similar changes in FRET. Conversely, treatment of a ribosomal complex containing deacylated and peptidyl-tRNAs bound in the A/P and P/E states, respectively, with EF-G.GTP causes reversal of the FRET changes. The use of FRET has enabled direct observation of intersubunit movement in solution, provides independent evidence that formation of the hybrid state is coupled to rotation of the 30 S subunit and shows that the intersubunit movement is reversed during the second step of translocation.  相似文献   
70.
Animal and yeast nucleolin function as global regulators of ribosome synthesis, and their expression is tightly linked to cell proliferation. Although Arabidopsis contains two genes for nucleolin, AtNuc-L1 is the predominant if not only form of the protein found in most tissues, and GFP-AtNuc-L1 fusion proteins were targeted to the nucleolus. Expression of AtNuc-L1 was strongly induced by sucrose or glucose but not by non-metabolizable mannitol or 2-deoxyglucose. Sucrose also caused enhanced expression of genes for subunits of C/D and H/ACA small nucleolar ribonucleoproteins, as well as a large number of genes for ribosomal proteins (RPs), suggesting that carbohydrate availability regulates de novo ribosome synthesis. In sugar-starved cells, induction of AtNuc-L1 occurred with 10 mM glucose, which seemed to be a prerequisite for resumption of growth. Disruption of AtNuc-L1 caused an increased steady-state level of pre-rRNA relative to mature 25S rRNA, and resulted in various phenotypes that overlap those reported for several RP gene mutants, including a reduced growth rate, prolonged lifetime, bushy growth, pointed leaf, and defective vascular patterns and pod development. These results suggest that the rate of ribosome synthesis in the meristem has a strong impact not only on the growth but also the structure of plants. The AtNuc-L1 disruptant exhibited significantly reduced sugar-induced expression of RP genes, suggesting that AtNuc-L1 is involved in the sugar-inducible expression of RP genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号