首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1000篇
  免费   65篇
  国内免费   51篇
  2024年   6篇
  2023年   34篇
  2022年   54篇
  2021年   66篇
  2020年   25篇
  2019年   37篇
  2018年   53篇
  2017年   30篇
  2016年   29篇
  2015年   44篇
  2014年   60篇
  2013年   66篇
  2012年   37篇
  2011年   62篇
  2010年   59篇
  2009年   52篇
  2008年   64篇
  2007年   47篇
  2006年   27篇
  2005年   39篇
  2004年   36篇
  2003年   35篇
  2002年   23篇
  2001年   15篇
  2000年   12篇
  1999年   10篇
  1998年   11篇
  1997年   4篇
  1996年   7篇
  1995年   4篇
  1994年   8篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   4篇
  1988年   6篇
  1987年   4篇
  1985年   3篇
  1984年   9篇
  1983年   5篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有1116条查询结果,搜索用时 31 毫秒
21.
22.
23.
Stop codon read-through (SCR) is a process of continuation of translation beyond a stop codon. This phenomenon, which occurs only in certain mRNAs under specific conditions, leads to a longer isoform with properties different from that of the canonical isoform. MTCH2, which encodes a mitochondrial protein that regulates mitochondrial metabolism, was selected as a potential read-through candidate based on evolutionary conservation observed in the proximal region of its 3′ UTR. Here, we demonstrate translational read-through across two evolutionarily conserved, in-frame stop codons of MTCH2 using luminescence- and fluorescence-based assays, and by analyzing ribosome-profiling and mass spectrometry (MS) data. This phenomenon generates two isoforms, MTCH2x and MTCH2xx (single- and double-SCR products, respectively), in addition to the canonical isoform MTCH2, from the same mRNA. Our experiments revealed that a cis-acting 12-nucleotide sequence in the proximal 3′ UTR of MTCH2 is the necessary signal for SCR. Functional characterization showed that MTCH2 and MTCH2x were localized to mitochondria with a long t1/2 (>36 h). However, MTCH2xx was found predominantly in the cytoplasm. This mislocalization and its unique C terminus led to increased degradation, as shown by greatly reduced t1/2 (<1 h). MTCH2 read-through–deficient cells, generated using CRISPR-Cas9, showed increased MTCH2 expression and, consistent with this, decreased mitochondrial membrane potential. Thus, double-SCR of MTCH2 regulates its own expression levels contributing toward the maintenance of normal mitochondrial membrane potential.  相似文献   
24.
25.
The adaptation of protein synthesis to environmental and physiological challenges is essential for cell viability. Here, we show that translation is tightly linked to the protein‐folding environment of the cell through the functional properties of the ribosome bound chaperone NAC (nascent polypeptide‐associated complex). Under non‐stress conditions, NAC associates with ribosomes to promote translation and protein folding. When proteostasis is imbalanced, NAC relocalizes from a ribosome‐associated state to protein aggregates in its role as a chaperone. This results in a functional depletion of NAC from the ribosome that diminishes translational capacity and the flux of nascent proteins. Depletion of NAC from polysomes and re‐localisation to protein aggregates is observed during ageing, in response to heat shock and upon expression of the highly aggregation‐prone polyglutamine‐expansion proteins and Aβ‐peptide. These results demonstrate that NAC has a central role as a proteostasis sensor to provide the cell with a regulatory feedback mechanism in which translational activity is also controlled by the folding state of the cellular proteome and the cellular response to stress.  相似文献   
26.
The Signal Recognition Particle (SRP) plays a critical role in the sorting of nascent secretory and membrane proteins. Remarkably, this function has been conserved from bacteria, where SRP delivers proteins to the inner membrane, through to eukaryotes, where SRP is required for targeting of proteins to the endoplasmic reticulum. This review focuses on present understanding of SRP structure and function and the relationship between the two. Furthermore, the similarities and differences in the structure, function and cellular role of SRP in bacteria, chloroplasts, fungi and mammals will be stressed.  相似文献   
27.
Acid carboxypeptidase III from Aspergillus oryzae was purified from the rivanol non-precipitated fraction. The optimum activity of the enzyme occurred at pH 3.0 for carbobenzoxy-l-glutamyl-l-tyrosine. The enzyme was inhibited by diisopropylphosphorofluoridate and SH reagents such as p-chloromercuribenzoate and monoiodoacetate, but not by such metal chelating agents as ethylenediaminetetraacetate, αα′-dipyridyl and o-phenanthroline. The molecular weight of the enzyme was estimated to be about 61,000. The enzyme hydrolyzed the peptides that possess masked or bulky N-terminal.  相似文献   
28.
Designed ankyrin repeat proteins (DARPins) are well‐established binding molecules based on a highly stable nonantibody scaffold. Building on 13 crystal structures of DARPin‐target complexes and stability measurements of DARPin mutants, we have generated a new DARPin library containing an extended randomized surface. To counteract the enrichment of unspecific hydrophobic binders during selections against difficult targets containing hydrophobic surfaces such as membrane proteins, the frequency of apolar residues at diversified positions was drastically reduced and substituted by an increased number of tyrosines. Ribosome display selections against two human caspases and membrane transporter AcrB yielded highly enriched pools of unique and strong DARPin binders which were mainly monomeric. We noted a prominent enrichment of tryptophan residues during binder selections. A crystal structure of a representative of this library in complex with caspase‐7 visualizes the key roles of both tryptophans and tyrosines in providing target contacts. These aromatic and polar side chains thus substitute the apolar residues valine, leucine, isoleucine, methionine, and phenylalanine of the original DARPins. Our work describes biophysical and structural analyses required to extend existing binder scaffolds and simplifies an existing protocol for the assembly of highly diverse synthetic binder libraries.  相似文献   
29.
30.
Tian Zhang 《Autophagy》2016,12(8):1411-1412
In eukaryotic cells, the macroautophagy pathway has been implicated in the degradation of long-lived proteins and damaged organelles. Although it has been demonstrated that macroautophagy can selectively degrade specific targets, its contribution to the basal turnover of cellular proteins had previously not been quantified on proteome-wide scales. In a recent study, we utilized dynamic proteomics to provide a global comparison of protein half-lives between wild-type and autophagy-deficient cells. Our results indicated that in quiescent fibroblasts, macroautophagy contributes to the basal turnover of a substantial fraction of the proteome. However, the contribution of macroautophagy to constitutive protein turnover is variable within the proteome. The methodology outlined in the study provides a global strategy for quantifying the selectivity of basal macroautophagy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号