首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2030篇
  免费   57篇
  国内免费   72篇
  2023年   21篇
  2022年   17篇
  2021年   26篇
  2020年   27篇
  2019年   34篇
  2018年   43篇
  2017年   21篇
  2016年   35篇
  2015年   36篇
  2014年   122篇
  2013年   136篇
  2012年   94篇
  2011年   67篇
  2010年   75篇
  2009年   70篇
  2008年   110篇
  2007年   107篇
  2006年   98篇
  2005年   89篇
  2004年   85篇
  2003年   84篇
  2002年   72篇
  2001年   66篇
  2000年   66篇
  1999年   62篇
  1998年   48篇
  1997年   45篇
  1996年   37篇
  1995年   39篇
  1994年   47篇
  1993年   26篇
  1992年   34篇
  1991年   30篇
  1990年   18篇
  1989年   9篇
  1988年   10篇
  1987年   9篇
  1986年   10篇
  1985年   22篇
  1984年   20篇
  1983年   13篇
  1982年   23篇
  1981年   6篇
  1980年   13篇
  1979年   5篇
  1978年   4篇
  1977年   7篇
  1976年   7篇
  1974年   5篇
  1973年   3篇
排序方式: 共有2159条查询结果,搜索用时 31 毫秒
71.
72.
Yu  Du  Zhao  Yundi  Pan  Junhui  Yang  Xingmiao  Liang  Zhenjie  Xie  Shengda  Cao  Ruibing 《中国病毒学》2021,36(6):1443-1455
Virologica Sinica - The Japanese encephalitis serogroup of the neurogenic Flavivirus has a specific feature that expresses a non-structural protein NS1′ produced through a programmed -1...  相似文献   
73.
It has recently been unveiled that a wide variety of microbial eukaryotes (protists) occur in chemosynthetic ecosystems, such as hydrothermal vents and methane seeps. However, there is little knowledge regarding protists associated with endemic animals inhabiting these environments. In the present study, utilizing PCR techniques, we detected fragments of the small subunit ribosomal RNA gene (SSU rRNA gene) from a particular protist from gill tissues of a significant fraction of the vesicomyid clams Calyptogena soyoae and C. okutanii complex and of the mussel Bathymodiolus platifrons and B. japonicus, all of which harbor chemosynthetic endosymbiont bacteria and dominate methane seeps in Sagami Bay, Japan. Based on the phylogeny of SSU rRNA gene, the organism in question was shown to belong to Alveolata. It is noteworthy that this protist did not affiliate with any known alveolate group, although being deeply branched within the lineage of Syndiniales, for which the monophyly was constantly recovered, but not robustly supported. In addition, the protist detected using PCR followed by sequencing was localized within gill epithelial cells of B. platifrons with whole‐mount fluorescence in situ hybridization. This protist may be an endoparasite or an endocommensal of Calyptogena spp. and Bathymodiolus spp., and possibly have physiological and ecological impacts on these bivalves.  相似文献   
74.
Eukaryotic ribosome assembly requires over 200 assembly factors that facilitate rRNA folding, ribosomal protein binding, and pre-rRNA processing. One such factor is Rlp7, an essential RNA binding protein required for consecutive pre-rRNA processing steps for assembly of yeast 60S ribosomal subunits: exonucleolytic processing of 27SA3 pre-rRNA to generate the 5′ end of 5.8S rRNA and endonucleolytic cleavage of the 27SB pre-rRNA to initiate removal of internal transcribed spacer 2 (ITS2). To better understand the functions of Rlp7 in 27S pre-rRNA processing steps, we identified where it crosslinks to pre-rRNA. We found that Rlp7 binds at the junction of ITS2 and the ITS2-proximal stem, between the 3′ end of 5.8S rRNA and the 5′ end of 25S rRNA. Consistent with Rlp7 binding to this neighborhood during assembly, two-hybrid and affinity copurification assays showed that Rlp7 interacts with other assembly factors that bind to or near ITS2 and the proximal stem. We used in vivo RNA structure probing to demonstrate that the proximal stem forms prior to Rlp7 binding and that Rlp7 binding induces RNA conformational changes in ITS2 that may chaperone rRNA folding and regulate 27S pre-rRNA processing. Our findings contradict the hypothesis that Rlp7 functions as a placeholder for ribosomal protein L7, from which Rlp7 is thought to have evolved in yeast. The binding site of Rlp7 is within eukaryotic-specific RNA elements, which are not found in bacteria. Thus, we propose that Rlp7 coevolved with these RNA elements to facilitate eukaryotic-specific functions in ribosome assembly and pre-rRNA processing.  相似文献   
75.
The central nonsense-mediated mRNA decay (NMD) regulator, Upf1, selectively targets nonsense-containing mRNAs for rapid degradation. In yeast, Upf1 preferentially associates with mRNAs that are NMD substrates, but the mechanism of its selective retention on these mRNAs has yet to be elucidated. Previously, we demonstrated that Upf1 associates with 40S ribosomal subunits. Here, we define more precisely the nature of this association using conventional and affinity-based purification of ribosomal subunits, and a two-hybrid screen to identify Upf1-interacting ribosomal proteins. Upf1 coimmunoprecipitates specifically with epitope-tagged 40S ribosomal subunits, and Upf1 association with high-salt washed or puromycin-released 40S subunits was found to occur without simultaneous eRF1, eRF3, Upf2, or Upf3 association. Two-hybrid analyses and in vitro binding assays identified a specific interaction between Upf1 and Rps26. Using mutations in domains of UPF1 known to be crucial for its function, we found that Upf1:40S association is modulated by ATP, and Upf1:Rps26 interaction is dependent on the N-terminal Upf1 CH domain. The specific association of Upf1 with the 40S subunit is consistent with the notion that this RNA helicase not only triggers rapid decay of nonsense-containing mRNAs, but may also have an important role in dissociation of the premature termination complex.  相似文献   
76.
77.
Molecular dynamics ensures that proteins and other factors reach their site of action in a timely and efficient manner. This is essential to the formation of molecular complexes, as they require an ever-changing framework of specific interactions to facilitate a model of self-assembly. Therefore, the absence or reduced availability of any key component would significantly impair complex formation and disrupt all downstream molecular networks. Recently, we identified a regulatory mechanism that modulates protein mobility through the inducible expression of a novel family of long noncoding RNA. In response to diverse environmental stimuli, the nucleolar detention pathway (NoDP) captures and immobilizes essential cellular factors within the nucleolus away from their effector molecules. The vast array of putative NoDP targets, including DNA (cytosine-5)-methyltransferase 1 (DNMT1) and the delta catalytic subunit of DNA polymerase (POLD1), suggests that this may be a common and significant regulatory mechanism. Here, we discuss the implications of this new posttranslational strategy for regulating molecular networks.  相似文献   
78.
Glioblastoma is the most common and aggressive brain tumor type, with a mean patient survival of approximately 1 year. Many previous analyses of the glioma kinome have identified key deregulated pathways that converge and activate mammalian target of rapamycin (mTOR). Following the identification and characterization of mTOR-promoting activity in gliomagenesis, data from preclinical studies suggested the targeting of mTOR by rapamycin or its analogs (rapalogs) as a promising therapeutic approach. However, clinical trials with rapalogs have shown very limited efficacy on glioma due to the development of resistance mechanisms. Analysis of rapalog-insensitive glioma cells has revealed increased activity of growth and survival pathways compensating for mTOR inhibition by rapalogs that are suitable for therapeutic intervention. In addition, recently developed mTOR inhibitors show high anti-glioma activity. In this review, we recapitulate the regulation of mTOR signaling and its involvement in gliomagenesis, discuss mechanisms resulting in resistance to rapalogs, and speculate on strategies to overcome resistance. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   
79.
80.

Background

Hereditary optic neuropathies (HONs) are a heterogeneous group of disorders that affect retinal ganglion cells (RGCs) and axons that form the optic nerve. Leber's Hereditary Optic Neuropathy and the autosomal dominant optic atrophy related to OPA1 mutations are the most common forms. Nonsyndromic autosomal recessive optic neuropathies are rare and their existence has been long debated. We recently identified the first gene responsible for these conditions, TMEM126A. This gene is highly expressed in retinal cellular compartments enriched in mitochondria and supposed to encode a mitochondrial transmembrane protein of unknown function.

Methods

A specific polyclonal antibody targeting the TMEM126A protein has been generated. Quantitative fluorescent in situ hybridization, cellular fractionation, mitochondrial membrane association study, mitochondrial sub compartmentalization analysis by both proteolysis assays and transmission electron microscopy, and expression analysis of truncated TMEM126A constructs by immunofluorescence confocal microscopy were carried out.

Results

TMEM126A mRNAs are strongly enriched in the vicinity of mitochondria and encode an inner mitochondrial membrane associated cristae protein. Moreover, the second transmembrane domain of TMEM126A is required for its mitochondrial localization.

Conclusions

TMEM126A is a mitochondrial located mRNA (MLR) that may be translated in the mitochondrial surface and the protein is subsequently imported to the inner membrane. These data constitute the first step toward a better understanding of the mechanism of action of TMEM126A in RGCs and support the importance of mitochondrial dysfunction in the pathogenesis of HON.

General significance

Local translation of nuclearly encoded mitochondrial mRNAs might be a mechanism for rapid onsite supply of mitochondrial membrane proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号