首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2070篇
  免费   59篇
  国内免费   74篇
  2203篇
  2023年   22篇
  2022年   18篇
  2021年   31篇
  2020年   28篇
  2019年   36篇
  2018年   44篇
  2017年   21篇
  2016年   37篇
  2015年   37篇
  2014年   122篇
  2013年   140篇
  2012年   94篇
  2011年   68篇
  2010年   75篇
  2009年   70篇
  2008年   111篇
  2007年   108篇
  2006年   99篇
  2005年   92篇
  2004年   85篇
  2003年   85篇
  2002年   75篇
  2001年   67篇
  2000年   66篇
  1999年   64篇
  1998年   50篇
  1997年   45篇
  1996年   40篇
  1995年   39篇
  1994年   47篇
  1993年   26篇
  1992年   36篇
  1991年   31篇
  1990年   18篇
  1989年   10篇
  1988年   10篇
  1987年   9篇
  1986年   10篇
  1985年   23篇
  1984年   20篇
  1983年   13篇
  1982年   24篇
  1981年   6篇
  1980年   13篇
  1979年   5篇
  1978年   4篇
  1977年   7篇
  1976年   7篇
  1974年   5篇
  1973年   4篇
排序方式: 共有2203条查询结果,搜索用时 15 毫秒
131.
Our previous study revealed that human ribosomal protein L6 (RPL6) was upregulated in multidrug-resistant gastric cancer cells and over-expression of RPL6 could protect gastric cancer cells from drug-induced apoptosis. The present study was designed to explore the role of RPL6 in tumorigenesis and development of gastric cancer. The expression of RPL6 in gastric cancer tissues and normal gastric mucosa was evaluated by immunohistochemical staining. It was found RPL6 was expressed at a higher level in gastric cancer tissues than that in normal gastric mucosa. RPL6 was then genetically overexpressed or knocked down in human immortalized gastric mucosa epithelial GES cells. It was demonstrated that upregulation of RPL6 accelerated the growth and enhanced in vitro colony forming ability of GES cells whereas downregulation of RPL6 showed adverse effects. Moreover, over-expression of RPL6 could promote G1 to S phase transition of GES cells. It was further evidenced that upregulation of RPL6 resulted in elevated cyclin E expression while downregulation of RPL6 caused decreased cyclin E expression in GES cells. Taken together, these data indicated that RPL6 was overexpressed in human gastric cancer and its over-expression could promote cell growth and cell cycle progression at least through upregulating cyclin E expression.  相似文献   
132.
Protein sequences evolved to fold in cells, including cotranslational folding of nascent polypeptide chains during their synthesis by the ribosome. The vectorial (N- to C-terminal) nature of cotranslational folding constrains the conformations of the nascent polypeptide chain in a manner not experienced by full-length chains diluted out of denaturant. We are still discovering to what extent these constraints affect later, posttranslational folding events. Here we directly address whether conformational constraints imposed by cotranslational folding affect the partitioning between productive folding to the native structure versus aggregation. We isolated polyribosomes from Escherichia coli cells expressing GFP, analyzed the nascent chain length distribution to determine the number of nascent chains that were long enough to fold to the native fluorescent structure, and calculated the folding yield for these nascent chains upon ribosome release versus the folding yield of an equivalent concentration of full-length, chemically denatured GFP polypeptide chains. We find that the yield of native fluorescent GFP is dramatically higher upon ribosome release of nascent chains versus dilution of full-length chains from denaturant. For kinetically trapped native structures such as GFP, folding correctly the first time, immediately after release from the ribosome, can lead to lifelong population of the native structure, as opposed to aggregation.  相似文献   
133.
A gene (rps2) coding for ribosomal protein S2 (RPS2) is present in the mitochondrial (mt) genome of several monocot plants, but absent from the mtDNA of dicots. Confirming that in dicot plants the corresponding gene has been transferred to the nucleus, a corresponding Arabidopsis thaliana nuclear gene was identified that codes for mitochondrial RPS2. As several yeast and mammalian genes coding for mt ribosomal proteins, the Arabidopsis RPS2 apparently has no N-terminal targeting sequence. In the maize mt genome, two rps2 genes were identified and both are transcribed, although at different levels. As in wheat and rice, the maize genes code for proteins with long C-terminal extensions, as compared to their bacterial counterparts. These extensions are not conserved in sequence. Using specific antibodies against one of the maize proteins we found that a large protein precursor is indeed synthesized, but it is apparently processed to give the mature RPS2 protein which is associated with the mitochondrial ribosome.  相似文献   
134.
135.
Background and AimsThe ribosomal DNA (rDNA) gene family, encoding ribosomal RNA (rRNA), has long been regarded as an archetypal example illustrating the model of concerted evolution. However, controversy is arising, as rDNA in many eukaryotic species has been proved to be polymorphic. Here, a metagenomic strategy was applied to detect the intragenomic polymorphism as well as the evolutionary patterns of 26S rDNA across the genus Camellia.MethodsDegenerate primer pairs were designed to amplify the 26S rDNA fragments from different Camellia species. The amplicons were then paired-end sequenced on the Illumina MiSeq platform.Key ResultsAn extremely high level of rDNA polymorphism existed universally in Camellia. However, functional rDNA was still the major component of the family, and was relatively conserved among different Camellia species. Sequence variations mainly came from rRNA pseudogenes and favoured regions that are rich in GC. Specifically, some rRNA pseudogenes have existed in the genome for a long time, and have even experienced several expansion events, which has greatly enriched the abundance of rDNA polymorphism.Conclusions Camellia represents a group in which rDNA is subjected to a mixture of concerted and birth-and-death evolution. Some rRNA pseudogenes may still have potential functions. Conversely, when released from selection constraint, they can evolve in the direction of decreasing GC content and structural stability through a methylation-induced process, and finally be eliminated from the genome.  相似文献   
136.
137.
The ribosomal protein S27a (RPS27a) is cleaved from the fusion protein ubiquitin–RPS27a (Ub–RPS27a). Generally, Ub and RPS27a are coexpressed as a fusion protein but function independently after Ub is cleaved from RPS27a by a deubiquitinating enzyme. As an RP, RPS27a assembles into ribosomes, but it also functions independently of ribosomes. RPS27a is involved in the development and poor prognosis of various cancers, such as colorectal cancer, liver cancer, chronic myeloid leukemia, and renal carcinoma, and is associated with poor prognosis. Notably, the murine double minute 2/P53 axis is a major pathway through which RPS27a regulates cancer development. Moreover, RPS27a maintains sperm motility, regulates winged aphid indirect flight muscle degeneration, and facilitates plant growth. Additionally, RPS27a is a metalloprotein and mercury (Hg) biomarker. In the present review, we described the origin, structure, and biological functions of RPS27a.  相似文献   
138.
Fungi in the phylum Cryptomycota have been recovered in numerous environmental DNA (eDNA) surveys but are only known from five described genera of intracellular parasites. These fungi are common in aquatic and soil habitats, but little is known about their relative diversity and specificity among particular habitats. We surveyed Cryptomycota from 80 eDNA samples including freshwater, soil, and marine habitats using Cryptomycota-preferential primers coupled with long-amplicon PacBio sequencing (1.2 kb of the 18S rRNA gene region). We found that freshwater samples were the most diverse, comprising 175 operational taxonomic units (OTUs) of Cryptomycota and also showed a high abundance of the related algae-parasitic group Aphelidiomycota, while marine samples were the least diverse with 25 OTUs. The composition of Cryptomycota communities was influenced by habitat, with freshwater and soil showing statistically distinct communities. Phylogenetic analyses showed that the present survey recovered most previously sampled major clades of Cryptomycota, but most (61%) OTUs were novel to this study, indicative of an extensive diversity of the group that remains largely uncharacterized.  相似文献   
139.
We report structural features and distribution patterns of 26 different group I introns located at three distinct nucleotide positions in nuclear small subunit ribosomal DNA (SSU-rDNA) of 10 Septoria and 4 other anamorphic species related to the teleomorphic genus Mycosphaerella. Secondary structure and sequence characteristics assigned the introns to the common IC1 and IE groups. Intron distribution patterns and phylogenetic relationships strongly suggested that some horizontal transfer events have occurred among the closely related fungal species sampled. To test this hypothesis, we used a comparative approach of intron- and rDNA-based phylogenies through MP- and ML-based topology tests. Our results showed two statistically well-supported major incongruences between the intron and the equivalent internal transcribed spacer (ITS) tree comparisons made. Such absence of a co-evolutive history between group I introns and host sequences is discussed relatively to the intron structures, the mechanisms of intron movement, and the biology of the Mycosphaerella pathogenic fungi. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Reviewing Editor: Debashish Bhattacharya  相似文献   
140.
Taylor DL  Bruns TD 《Molecular ecology》1999,8(11):1837-1850
We have investigated colonization strategies by comparing the abundance and frequency of ectomycorrhizal fungal species on roots in a mature Pinus muricata forest with those present as resistant propagules colonizing potted seedlings grown in the same soil samples. Thirty-seven fungal species were distinguished by internal transcribed spacer (ITS) restriction fragment length polymorphisms (RFLPs); most were identified to species level by sporocarp RFLP matches or to genus/family level by using sequence databases for the mitochondrial and nuclear large-subunit rRNA genes. The below-ground fungal community found in the mature forest contrasted markedly with the resistant propagule community, as only four species were found in both communities. The dominant species in the mature forest were members of the Russulaceae, Thelephorales and Amanitaceae. In contrast, the resistant propagule community was dominated by Rhizopogon species and by species of the Ascomycota. Only one species, Tomentella sublilacina (Thelephorales), was common in both communities. The spatial distribution of mycorrhizae on mature roots and propagules in the soil differed among the dominant species. For example, T. sublilacina mycorrhizae exhibited a unique bias toward the organic horizons, Russula brevipes mycorrhizae were denser and more clumped than those of other species and Cenococcum propagules were localized, whereas R. subcaerulescens propagules were evenly distributed. We suggest that species differences in resource preferences and colonization strategies, such as those documented here, contribute to the maintenance of species richness in the ectomycorrhizal community.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号