首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8400篇
  免费   449篇
  国内免费   456篇
  2023年   82篇
  2022年   135篇
  2021年   183篇
  2020年   177篇
  2019年   234篇
  2018年   222篇
  2017年   171篇
  2016年   213篇
  2015年   254篇
  2014年   497篇
  2013年   686篇
  2012年   417篇
  2011年   493篇
  2010年   377篇
  2009年   422篇
  2008年   469篇
  2007年   454篇
  2006年   411篇
  2005年   387篇
  2004年   354篇
  2003年   313篇
  2002年   276篇
  2001年   185篇
  2000年   138篇
  1999年   150篇
  1998年   145篇
  1997年   118篇
  1996年   75篇
  1995年   77篇
  1994年   92篇
  1993年   71篇
  1992年   64篇
  1991年   63篇
  1990年   57篇
  1989年   51篇
  1988年   41篇
  1987年   35篇
  1986年   51篇
  1985年   68篇
  1984年   100篇
  1983年   78篇
  1982年   83篇
  1981年   54篇
  1980年   64篇
  1979年   50篇
  1978年   35篇
  1977年   27篇
  1976年   33篇
  1975年   24篇
  1974年   25篇
排序方式: 共有9305条查询结果,搜索用时 31 毫秒
101.
The three-dimensional structure of human angiogenin has been determined by X-ray crystallography and is compared here with an earlier model which predicted its structure, based on the homology of angiogenin with bovine pancreatic ribonuclease A. Comparison of the predicted model and crystal structure shows that the active-site histidine residues and the core of the angiogenin molecule, including most of the-strands and-helices, were predicted reasonably well. However, the structure of the surface loop regions and residues near the truncated C-terminus differs significantly. The C-terminal segment includes the active-site residues Asp-116, Gln-117, and Ser-118; Gln-117 in particular has been shown to be important in affecting the ribonucleolytic activity of angiogenin. Also, the orientation of one helix in the model differed from the orientation observed experimentally by about 20°, resulting in a large displacement of this chain segment. The difficulty encountered in predicting the surface loop regions has led to a new algorithm [Palmer and Scheraga (1991),J. Comput. Chem.,12, 505–526; (1992),J. Comput. Chem.,13, 329–350] for predicting the conformations of surface loops.  相似文献   
102.
Deleted forms of ricin B chain (RTB) containing only one of the two galactose binding sites were produced inE. coli and targeted to the periplasm by fusion to theompA orompF signal sequences. The proteins were then isolated from the periplasm and their sugar binding properties assessed. Previous studies investigating the properties of such proteins produced inXenopus laevis oocytes suggested that deleted forms of RTB, when not glycosylated, retain their ability to bind simple sugars, unlike the full-length unglycosylated proteins. When produced inE. coli however we found that only one, EB733, of a number of deleted forms of RTB closely related to those previously produced inXenopus laevis oocytes, bound to simple sugars. All of the deletion forms of RTB were found to bind in the asialofetuin binding assay; an assay which has been previously utilized to measure binding of lectins to the terminal galactose residues of glycoprotein oligosaccharides. However, in contrast to glycosylated RTB, binding of the deletion mutants could be competed to only a small degree or not at all with galactose. The only deletion mutant observed to bind to free galactose when produced inE. coli corresponded closely to the complete domain 2 of RTB. It is assumed that this mutant forms a stable structure similar to that of the C-terminal domain in the full-length protein. The structural integrity of EB733 was not only suggested by its sugar binding properties and solubility but also by its consistently higher level of expression and the absence of any apparent susceptibility toE. coli proteases.Abbreviations RTA ricin toxin A chain - RTB ricin toxin B chain - ER endoplasmic reticulum - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - IPTG isopropyl -d-thiogalactopyranoside  相似文献   
103.
Ribonucleases are widely found in the tissues of living organisms, but the functions of individual ribonucleases are not clear. To facilitate characterization of individual ribonucleases, I have developed a rapid method to separate and identify each ribonuclease from a crude sample by gel electrophoresis instead of by time-consuming purification steps. The ribonucleases in a crude sample are first separated by RNA-cast SDS-polyacrylamide gel electrophoresis and then eluted from the gel after ethidium bromide staining. To determine the base specificity of each ribonuclease, a 5 labelled oligonucleotide with known sequence is added to the enzyme eluate and the digested products are analyzed by denaturing gel electrophoresis. The base specificity of bovine pancreatic ribonuclease (RNase A), bullfrog oocyte-specific ribonuclease (RC-RNase), human serum ribonucleases and sweet potato leaf ribonucleases were determined by this method. Other properties of individual ribonucleases, e.g. substrate preference, may also be determined from crude samples by this method without further purification steps.Abbreviations RNase ribonuclease - SDS sodium dodecyl sulfate  相似文献   
104.
E. coli genes that contain a high frequency of the tetranucleotide CTAG are also rich in the tetramers CTTG, CCTA, CCAA, TTGG, TAGG, and CAAG (group-I tetramers). Conversely, E. coli genes lacking CTAG are rich in the tetranucleotides CCTG, CCAG, CTGG, and CAGG (group-II tetramers). These two gene samples differ also in codon usage, amino acid composition, frequency of Dcm sites, and contrast vocabularies. Group-I tetramers have in common that they are depleted by very-short-patch repair (VSP), while group-II tetramers are favored by VSP activity. The VSP system repairs G:T mismatches to G:C, thereby increasing the overall G+C content of the genome; for this reason the CTAG-rich sample has a lower G+C content than the CTAG-poor sample. This compositional heterogeneity can be tentatively explained by a low level of VSP activity on the CTAG-rich sample. A negative correlation is found between the frequency of group-I tetramers and the level of gene expression, as measured by the Codon Adaptation Index (CAI). A possible link between the rate of VSP activity and the level of gene expression is considered.Correspondence to: A. Marine  相似文献   
105.
Abstract: The effects of prostaglandin E2 (PGE2) on 86Rb efflux from rat brain synaptosomes were studied to explore its role in nerve ending potassium (K+) channel modulation. A selective dose-dependent inhibition of the calcium-activated charybdotoxin-sensitive component of efflux was found upon application of PGE2. No significant effect was seen on basal and voltage-dependent components over the concentration range of 10–8 to 10–5M. The protein kinase C (PKC) inhibitors H-7 (10 μM) and staurosporine (100 nM), as well as prolonged preincubation (90 min) with 40-phorbol 12, 13-dibutyrate, which has been reported to down-regulate PKC, abolished the PGE2-in- duced inhibition, whereas HA1004 (10 μM) and Rp-3′,5’cyclic phosphorothioate (100 nM), which are relatively more selective for protein kinase A than PKC, did not. 4β-Phorbol 12, 13-dibutyrate (100 nM), an activator of PKC, produced a similar inhibition of the Ca2+-dependent component of 86Rb efflux but also had no effect on the basal and voltage-dependent components. These data suggest that PGE2 can inhibit rat brain nerve ending calcium-activated 86Rb efflux, and this inhibition may involve PKC activation.  相似文献   
106.
Abstract: A synthetic peptide corresponding to residues 226–240 (E9 peptide) of human τ, which contains an Lys-Ser-Pro motif, was used to raise a polyclonal antibody. The antibody, E9, was 10-fold less reactive with phospho-E9 peptide than with native E9 peptide. E9 antibody was used to study the extent of phosphorylation in a modified form of τ (PHF-τ) that is found in Alzheimer's disease brain and is incorporated into paired helical filaments (PHFs). E9 immunolabeled Alzheimer's disease neurofibrillary tangles and abnormal neurites in brain sections intensely, with increased immunoreactivity detected after pretreatment of sections with phosphatase. On immunoblots and ELISA, E9 reacted with PHF-τ and recombinant human τ but not with the high and middle molecular weight neurofilament proteins. Phosphatase treatment of PHF-τ improved the E9 immunoreactivity by 30–50%. Dephosphorylated high but not middle molecular weight neurofilament protein became reactive with E9. These results indicate that <50% of the PHF-T is phosphorylated in the subregion corresponding to residues 226–240 of τ and suggest that the phosphorylation of this region may not be essential for PHF formation.  相似文献   
107.
λ-Escherichia coli complexes exhibited remarkable sensitivity to the treatment with test steroidal derivatives in the presence of Cu(II). The decline in plaque-forming units after steroid treatment was more pronounced in complexes with some of the irradiation repair-defective mutants of E. coli K-12, i.e., recA, lexA and polA, as compared to uvrA and wild-type strains. The red gene of λ phage and recA gene of E. coli seem to have a complementary effect on the steroid-induced lesions. An enhanced level of mutagenesis was observed when steroid-treated E. coli cells were transformed with steroid-treated pBR322 plasmid DNA. A remarkable degree of c mutation was also observed when steroid I-treated phage particles were allowed to adsorb on steroid-treated wild-type bacteria. Moreover, the oxathione steroid treatment of λcI857-E. coli lysogen resulted in prophage induction in nutrient broth even at 32°C. Thus on the basis of these results, the role of SOS repair system in steroid-induced mutagenesis and repair of DNA lesions in E. coli and bacteriophage λ has been suggested.  相似文献   
108.
A new family of protein domains consisting of 50-80 amino acid residues is described. It is composed of nearly 40 members, including domains encoded by plastid and phage group I introns; mitochondrial, plastid, and bacterial group II introns; eubacterial genomes and plasmids; and phages. The name "EX1HH-HX3H" was coined for both domain and family. It is based on 2 most prominent amino acid sequence motifs, each encompassing a pair of highly conserved histidine residues in a specific arrangement: EX1HH and HX3H. The "His" motifs often alternate with amino- and carboxy-terminal motifs of a new type of Zn-finger-like structure CX2,4CX29-54[CH]X2,3[CH]. The EX1HH-HX3H domain in eubacterial E2-type bacteriocins and in phage RB3 (wild variant of phage T4) product of the nrdB group I intron was reported to be essential for DNA endonuclease activity of these proteins. In other proteins, the EX1HH-HX3H domain is hypothesized to possess DNase activity as well. Presumably, this activity promotes movement (rearrangement) of group I and group II introns encoding the EX1HH-HX3H domain and other gene targets. In the case of Escherichia coli restrictase McrA and possibly several related proteins, it appears to mediate the restriction of alien DNA molecules.  相似文献   
109.
影响大肠杆菌中外源基因表达的因素   总被引:41,自引:1,他引:40  
大肠杆菌已经被广泛地应用于表达各种外源基因,但是,不同的外源基因在表达效率上却有很大的差异,文章综述了影响大肠杆菌中外源基因表达的因素,这将有助于认识大肠杆菌中外源基因表达的规律,以便采取有效的方法提高外源基因在大肠杆菌中的表达效率.  相似文献   
110.
Abstract Escherichia coli heat-labile enterotoxin B subunit (EtxB) has been proposed as a potential protein carrier for the delivery of heterologous peptides to target cells, particularly for the oral delivery of epitopes to the mucosal immune system. In this study, two extensions to the C-terminus of EtxB were genetically engineered that correspond to a well-characterized neutralising epitope of glycoprotein D from herpes simplex virus (EtxB-gD) and to the C-terminal nine amino acids from the 38 kDa subunit of HSV-encoded ribonucleotide reductase (EtxB-R2). Here we describe the extracellular secretion of the two hybrid EtxBs from a marine Vibrio harbouring a broad-host range inducible expression vector containing the hybrid genes. Large amounts of intact fusion proteins (15–20 mg per liter of culture) were secreted into the medium upon induction. These hybrid proteins maintained the receptor-binding activity of the native toxin as well as being cross-reactive with anti-EtxB and anti-heterologous peptide monoclonal antibodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号