首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4731篇
  免费   11篇
  国内免费   13篇
  2024年   32篇
  2023年   350篇
  2022年   226篇
  2021年   274篇
  2020年   354篇
  2019年   443篇
  2018年   414篇
  2017年   291篇
  2016年   353篇
  2015年   191篇
  2014年   441篇
  2013年   903篇
  2012年   41篇
  2011年   37篇
  2010年   30篇
  2009年   11篇
  2008年   15篇
  2007年   15篇
  2006年   6篇
  2005年   48篇
  2004年   30篇
  2003年   25篇
  2002年   23篇
  2001年   6篇
  2000年   12篇
  1999年   9篇
  1998年   13篇
  1997年   12篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   13篇
  1984年   20篇
  1983年   22篇
  1982年   11篇
  1981年   9篇
  1980年   10篇
  1979年   10篇
  1978年   7篇
  1977年   9篇
  1976年   3篇
  1975年   4篇
  1974年   6篇
  1973年   2篇
排序方式: 共有4755条查询结果,搜索用时 15 毫秒
991.
Conformation switching in protein–protein complexes is considered important for the molecular recognition process. Overall analysis of 123 protein–protein complexes in a benchmark data-set showed that 6.8% of residues switched over their secondary structure conformation upon complex formation. Amino acid residue-wise preference for conformation change has been analyzed in binding and non-binding site residues separately. In this analysis, residues such as Ser, Leu, Glu, and Lys had higher frequency of secondary structural conformation change. The change of helix to coil and sheet to coil conformation and vice versa has been observed frequently, whereas the conformation change of helix to extended sheet occurred rarely in the studied complexes. Influence of conformation change toward the N and C terminal on either side of the binding site residues has been analyzed. Further, analysis on φ and ψ angle variation, conservation, stability, and solvent accessibility have been performed on binding site residues. Knowledge obtained from the present study could be effectively employed in the protein–protein modeling and docking studies.  相似文献   
992.
High mobility group A1 (HMGA1), a non-histone chromosomal protein, is highly expressed in a wide range of human cancers including cervical, breast, and prostate cancers. Therefore, hmga1 gene is considered as an attractive potential target for anticancer drugs. We have chosen 27 bp DNA sequence from a regulatory region of hmga1 promoter and studied its interaction with adriamycin (ADM) and in vitro expression of HMGA1 in the presence of ADM in HeLa cell line. A variety of biophysical techniques were employed to understand the characteristics of [DNA–ADM] complex. Spectrophotometric titration data, DNA denaturation profiles, and quenching of fluorescence of ADM in the presence of DNA demonstrated a strong complexation between DNA and ADM with a high binding affinity (Ka) of 1.3 × 106 M?1 and a stoichiometry of 1:3 (drug:nucleotide). The energetics of binding obtained from isothermal titration calorimetry and differential scanning calorimetry suggest the binding to be exothermic and enthalpy (?H, ?6.7 ± 2.4 kcal M?1) and entropy (TΔS, 18.5 ± 6.4 kcal M?1) driven (20°C), which is typical of intercalative mode of binding. Further, results on decreased expression (by ~70%) of HMGA1 both at mRNA and protein levels in association with the observed cell death (by ~75%) in HeLa cell line, clearly confirm that ADM does target hmga1; however, the effect of ADM on genes other than hmga1 either directly or via hmga1-mediated pathways cannot be ruled out in the observed cytotoxicity. Therefore, hmga1 in general and particularly the regulatory region is a promising target for therapeutic strategy in combating cancer.  相似文献   
993.
The KCTD family is an emerging class of proteins that are involved in important biological processes whose biochemical and structural properties are rather poorly characterized or even completely undefined. We here used KCTD5, the only member of the family with a known three-dimensional structure, to gain insights into the intrinsic structural stability of the C-terminal domain (CTD) and into the mutual dynamic interplay between the two domains of the protein. Molecular dynamics (MD) simulations indicate that in the simulation timescale (120 ns), the pentameric assembly of the CTD is endowed with a significant intrinsic stability. Moreover, MD analyses also led to the identification of exposed β-strand residues. Being these regions intrinsically sticky, they could be involved in the substrate recognition. More importantly, simulations conducted on the full-length protein provide interesting information of the relative motions between the BTB domain and the CTD of the protein. Indeed, the dissection of the overall motion of the protein is indicative of a large interdomain twisting associated with limited bending movements. Notably, MD data indicate that the entire interdomain motion is pivoted by a single residue (Ser150) of the hinge region that connects the domains. The functional relevance of these motions was evaluated in the context of the functional macromolecular machinery in which KCTD5 is involved. This analysis indicates that the interdomain twisting motion here characterized may be important for the correct positioning of the substrate to be ubiquitinated with respect to the other factors of the ubiquitination machinery.  相似文献   
994.
Three different human head models in a free space are exposed to blast waves coming from four different directions. The four head–neck–body models composed of model a, with the neck free in space; model b, with neck fixed at the bottom; and model c, with the neck attached to the body. The results show that the effect of the body can be ignored for the first milliseconds of the head–blast wave interactions. Also one can see that although most biomechanical responses of the brain have similar patterns in all models, the shear stresses are heavily increased after a few milliseconds in model b in which the head motion is obstructed by the fixed-neck boundary conditions. The free-floating head model results are closer to the attached-body model.  相似文献   
995.
996.
Various stimuli such as the flexibility of lumbopelvic structures influence the neuromuscular responses of the trunk musculature, leading to different load sharing strategies and reflex muscle responses from the afferents of lumbopelvic mechanoreceptors. This link between flexibility and neuromuscular response has been poorly studied.The aim of this study was to investigate the relationship between lumbopelvic flexibility and neuromuscular responses of the erector spinae, hamstring and abdominal muscles during trunk flexion–extension. Lumbopelvic movement patterns were measured in 29 healthy women, who were separated into two groups according to their flexibility during trunk flexion–extension. The electromyographic responses of erector spinae, rectus abdominis and biceps femoris were also recorded.Subjects with greater lumbar flexibility had significantly less pelvic flexibility and vice versa. Subjects with greater pelvic flexibility had a higher rate of relaxation and lower levels of hamstring activation during maximal trunk flexion.The neuromuscular response patterns of the hamstrings seem partially modulated by pelvic flexibility. Not so with the lumbar erector spinae and lumbar flexibility, despite the assertions of some previous studies. The results of this study improve our knowledge of the relationships between trunk joint flexibility and neuromuscular responses, a relationship which may play a role in low back pain.  相似文献   
997.
The current study examined of the effect of intermittent, short-term periods of full trunk flexion on the development of low back pain (LBP) during two hours of standing. Sixteen participants completed two 2-h standing protocols, separated by one week. On one day, participants stood statically for 2 h (control day); on the other day participants bent forward to full spine flexion (termed flexion trials) to elicit the flexion relaxation (FR) phenomenon for 5 s every 15 min (experimental day). The order of the control and experimental day was randomized. During both protocols, participants reported LBP using a 100 mm visual analogue scale every 15 min. During the flexion trials, lumbar spine posture, erector spinae and gluteus medius muscle activation was monitored. Ultimately, intermittent trunk flexion reduced LBP by 36% (10 mm) at the end of a 2-h period of standing. Further, erector spinae and gluteus medius muscle quietening during FR was observed in 91% and 65% of the flexion trials respectively, indicating that periods of rest did occurred possibly contributing to the reduction in LBP observed. Since flexion periods do not require any aids, they can be performed in most workplaces thereby increasing applicability.  相似文献   
998.
Four series of novel and potent FXa inhibitors possessing the 1,2,4-triazole moiety and pyrrole moiety as P2 binding element and dihydroimidazole/tetrahydropyrimidine groups as P4 binding element were designed, synthesized, and evaluated for their anticoagulant activity in human and rabbit plasma in vitro. Most compounds showed moderate to excellent activity. Compounds 14a, 16, 18c, 26c, 35a, and 35b were further examined for their inhibition activity against human FXa in vitro and rat venous thrombosis in vivo. The most promising compound 14a, with an IC50 (FXa) value of 0.15 μM and 99% inhibition rate, was identified for further evaluation as an FXa inhibitor.  相似文献   
999.
A Pd-catalysed amination method is used to convert seco-CBI, a synthetic analogue of the alkylating subunit of the duocarmycin natural products, from the phenol to amino form. This allows efficient enantioselective access to the more potent S enantiomer of aminoCBI and its incorporation into analogues of DNA minor groove cross-linking agents. Evaluation in a panel of nine human tumour cell lines shows that the bifunctional agents containing aminoCBI are generally less cytotoxic than their phenolCBI analogues and more susceptible to P-glycoprotein-mediated resistance. However, all bifunctional agents are potent cytotoxins, some in the sub-pM IC50 range, with in vitro properties that compare favourably with established microtubule-targeted ADC payloads.  相似文献   
1000.
The Oxa-Pictet–Spengler reaction of methyl 3-hydroxy-4-phenylbutanoate (8) was explored to obtain novel σ receptor ligands. 1-Acyl protected piperidone ketals 10 and 11 reacted with phenylethanol 8 to yield spirocyclic compounds. Aliphatic aldehyde acetals 19 provided 1,3-disubstituted 2-benzopyrans 20 with high cis-diastereoselectivity. The intramolecular Oxa-Pictet–Spengler reaction of 24 led to the tricyclic compound 25. The spirocyclic compounds 18 show high σ1 affinity (Ki 20–26 nM) and σ12 selectivity (>9-fold), when a large substituent (n-octyl, benzyl, phenylpropyl) is attached to the piperidine N-atom. Opening of the piperidine ring to yield aminoethyl (22, 23) or aminomethyl derivatives (21) resulted in reduced σ1 affinity and σ12 selectivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号