首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   21篇
  国内免费   29篇
  2024年   1篇
  2023年   5篇
  2022年   4篇
  2021年   3篇
  2020年   11篇
  2019年   8篇
  2018年   7篇
  2017年   7篇
  2016年   9篇
  2015年   4篇
  2014年   16篇
  2013年   25篇
  2012年   5篇
  2011年   5篇
  2010年   11篇
  2009年   7篇
  2008年   14篇
  2007年   9篇
  2006年   17篇
  2005年   8篇
  2004年   7篇
  2003年   6篇
  2002年   8篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1998年   8篇
  1997年   7篇
  1996年   9篇
  1995年   7篇
  1994年   10篇
  1993年   1篇
  1992年   5篇
  1991年   3篇
  1990年   4篇
  1989年   6篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   6篇
排序方式: 共有287条查询结果,搜索用时 265 毫秒
41.
Tropical cowpea rhizobia are often presumed to be generally promiscuous but poor N fixers. This study was conducted to evaluate symbiotic interactions of 59 indigenous rhizobia isolates (49 of them from cowpea (Vigna unguiculata)), with up to 13 other (mostly tropical) legume species. Host ranges averaged 2.4 and 2.3 legume species each for fast- and slow-growing isolates respectively compared to 4.3 for slow-growing reference cowpea strains. An average of 22% and 19% of fast- and slow-growing cowpea isolates respectively were effective on each of 12 legume species tested. We conclude that the indigenous cowpea rhizobia studied have relatively narrow host ranges. The ready nodulation of different legumes in tropical soils appears due to the diversity of indigenous symbiotic genotypes, each consisting of subgroups compatible with a limited number of legume species.  相似文献   
42.
Odee  D.W.  Sutherland  J.M.  Makatiani  E.T.  McInroy  S.G.  Sprent  J.I. 《Plant and Soil》1997,188(1):65-75
Over 480 rhizobia were isolated from root nodules of woody legume and herbaceous trap host species grown in soils collected from 12 different Kenyan sites. The isolates were differentiated by growth and morphological characteristics, intrinsic antibiotic resistance (IAR) and salt (NaCl) tolerance levels (STL) when grown on yeast mannitol mineral salts agar and broth media.The bulk of the isolates (91%) were watery, milky-translucent and curdled milk types with moderate to copious extracellular polysaccharide (EPS). The rest were creamy or white opaque with little to moderate EPS production. Overall, they showed a wide range of growth rates: very fast-growing (mean generation time 1.6–2.5 h), fast-growing (2.8–4.8 h), intermediate between fast- and slow-growing (5.6–5.7 h) and slow- and very slow-growing (6.4–8.8 h). The isolates were tentatively grouped into Rhizobium spp., to include very fast, fast and intermediate (acid-producing) types; and Bradyrhizobium spp., to include very slow, slow and intermediate (alkali-producing) types.Bradyrhizobium spp. were more sensitive to antibiotics (40 g mL-1) than Rhizobium spp., contrary to the general opinion which indicates that they are normally resistant. Cluster analysis based on sensitivity responses of IAR and STL could not distinguish Rhizobium spp. from Bradyrhizobium spp., neither was there any association by site nor host of isolation except for those isolates trapped with Phaseolus vulgaris at Kibwezi.Our data demonstrated a high diversity of tropical rhizobia associated with trees.  相似文献   
43.
胡枝子属根瘤菌的多相分类研究   总被引:5,自引:0,他引:5  
采用了数值分类、全细胞可溶性蛋白电泳分析、DNAG+Cmol%和DNA相关性的测定以及16SrDNAPCRRFLP分析等多相分类技术对来源于不同地区的16种寄主的胡枝子根瘤菌进行了系统的分类研究。数值分类的结果表明,在67%的相似性水平上,全部供试菌可以分为快生型根瘤菌和慢性型根瘤菌两大群,在80%的相似性水平上又可分为四个亚群。在此基础上,对各亚群的胡枝子根瘤菌进行了DNA相关性的测定,以进一步证实和确定它们的分类地位,并通过16SrDNAPCRRFLP分析对各亚群的系统发育关系进行了初步研究。  相似文献   
44.
Root‐nodulating bacteria are intimate associates of legumes. From a pool of rhizobia isolated from root nodules of Mucuna pruriens (Velvet bean/Kaunch), RMP66 and BMP17 were found to be capable of promoting siderophore and IAA production and phosphate solubilization (insoluble tri‐calcium). Both symbionts were studied further to determine their abilities to promote plant growth and to control root‐rot in Mucuna pruriens caused by the pathogenic plant fungus Macrophomina phaseolina. RMP66 and BMP17 were selected based on their excellent inhibitory activities against M. phaseolina (by 78% and 71%, respectively) in dual culture and in agar‐well assays using cell‐free culture filtrate (CFCF) (by 76% and 62%, respectively). Both strains inhibited fungal growth to a greater extent in iron‐deficient medium (51% and 69%) than in iron‐supplemented medium (37% and 0%), respectively. CFCFs of RMP66 and BMP17 obtained from Pikovskaya's broth and tryptophan‐amended YEM broth inhibited fungal growth by 80%‐55% and 70%‐43%, respectively, and were identified as Sinorhizobium meliloti RMP66 and Bradyrhizobium diazoefficiens BMP17 by 16S rDNA sequencing. Centrifuged and pelleted cells harvested from exponentially grown cultures of Smeliloti RMP66 and Bdiazoefficiens BMP17 were used to bacterize seeds of M. pruriens, which then showed enhanced seed germination (by up to 17% and 12%, respectively), and subsequent increases in other plant growth parameters in field trials. Considerable increases in seedling vigour indices (62%: 53% and 110%: 130%) and biomass (8%: 13% and 25%: 28%) were also observed for bacterial treatments. Tn5‐mediated antibiotic‐resistant marker strains showed enhanced nodule occupancy by up to 72% and 68%, respectively. This study describes a multifunctional legume nodule rhizobia that could be utilized in multicropping systems under different agroclimatic conditions as a bioinoculant and alternative to fertilizers.  相似文献   
45.
In this paper, we examine the importance of glutathione in symbiosis, using a glutathione biosynthetic gshB mutant derived from Rhizobium tropici CIAT899, a common bean (Phaseolus vulgaris) endosymbiont. Plants infected with the mutant strain presented a delayed nodulation phenotype and a reduction in the dry weight of aerial part of plants, suggesting diminished nitrogen-fixation activity. In addition, bacterial gshB expression was assayed in wild-type infected nodules, during the different steps of nodulation, and found to increase in mature and early senescent nodules. Conspicuously, nodules induced by gshB mutant bacteria presented an early senescent pattern, which was associated with increased levels of superoxide accumulation. These results provide a direct evidence of the role of bacterial glutathione in protecting nodules from reactive oxygen species, which may determine nodule senescence.  相似文献   
46.
47.
Fifty rhizobial isolates of Lathyrus and Oxytropis collected from northern regions of China were studied in their genotypic characterization based upon analyses of ARDRA, 16S-23S IGS PCR-RFLP, TP-RAPD, MLEE, sequences of 16S rDNA gene and housekeeping genes of atpD, recA and glnII. The results demonstrated that most of the Lathyrus rhizobia belonged to Rhizobium and most of the Oxytropis rhizobia belonged to Sinorhizobium. A novel group of Rhizobium sp. I and S. meliloti were identified as the main microsymbionts respectively associated with Lathyrus and Oxytropis species in the collection area, which were new associations between rhizobia and the mentioned hosts. This study also provides new evidence for biogeography of rhizobia. Supported by the National Program for Basic S&T Platform Construction (Grant No. 2005DKA21201-1), the National Natural Science Foundation of China (Grant No. 30670001), and the National Basic Research Program of China (Grant No. 2006CB100206)  相似文献   
48.
Legume plants regulate the number of nitrogen‐fixing root nodules they form via a process called the Autoregulation of Nodulation (AON). Despite being one of the most economically important and abundantly consumed legumes, little is known about the AON pathway of common bean (Phaseolus vulgaris). We used comparative‐ and functional‐genomic approaches to identify central components in the AON pathway of common bean. This includes identifying PvNARK, which encodes a LRR receptor kinase that acts to regulate root nodule numbers. A novel, truncated version of the gene was identified directly upstream of PvNARK, similar to Medicago truncatula, but not seen in Lotus japonicus or soybean. Two mutant alleles of PvNARK were identified that cause a classic shoot‐controlled and nitrate‐tolerant supernodulation phenotype. Homeologous over‐expression of the nodulation‐suppressive CLE peptide‐encoding soybean gene, GmRIC1, abolished nodulation in wild‐type bean, but had no discernible effect on PvNARK‐mutant plants. This demonstrates that soybean GmRIC1 can function interspecifically in bean, acting in a PvNARK‐dependent manner. Identification of bean PvRIC1, PvRIC2 and PvNIC1, orthologues of the soybean nodulation‐suppressive CLE peptides, revealed a high degree of conservation, particularly in the CLE domain. Overall, our work identified four new components of bean nodulation control and a truncated copy of PvNARK, discovered the mutation responsible for two supernodulating bean mutants and demonstrated that soybean GmRIC1 can function in the AON pathway of bean.  相似文献   
49.
50.
Burkholderia sp. strain WSM2230 is an aerobic, motile, Gram-negative, non-spore-forming acid-tolerant rod isolated from acidic soil collected in 2001 from Karijini National Park, Western Australia, using Kennedia coccinea (Coral Vine) as a host. WSM2230 was initially effective in nitrogen-fixation with K. coccinea, but subsequently lost symbiotic competence. Here we describe the features of Burkholderia sp. strain WSM2230, together with genome sequence information and its annotation. The 6,309,801 bp high-quality-draft genome is arranged into 33 scaffolds of 33 contigs containing 5,590 protein-coding genes and 63 RNA-only encoding genes. The genome sequence of WSM2230 failed to identify nodulation genes and provides an explanation for the observed failure of the laboratory grown strain to nodulate. The genome of this strain is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号