首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2600篇
  免费   238篇
  国内免费   41篇
  2024年   3篇
  2023年   39篇
  2022年   45篇
  2021年   78篇
  2020年   97篇
  2019年   141篇
  2018年   98篇
  2017年   65篇
  2016年   91篇
  2015年   91篇
  2014年   155篇
  2013年   186篇
  2012年   100篇
  2011年   130篇
  2010年   94篇
  2009年   103篇
  2008年   99篇
  2007年   133篇
  2006年   112篇
  2005年   97篇
  2004年   94篇
  2003年   107篇
  2002年   80篇
  2001年   76篇
  2000年   69篇
  1999年   60篇
  1998年   50篇
  1997年   41篇
  1996年   42篇
  1995年   39篇
  1994年   33篇
  1993年   38篇
  1992年   36篇
  1991年   22篇
  1990年   20篇
  1989年   20篇
  1988年   24篇
  1987年   14篇
  1986年   11篇
  1985年   13篇
  1984年   10篇
  1983年   7篇
  1982年   5篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
排序方式: 共有2879条查询结果,搜索用时 718 毫秒
21.
NADH-dependent formation of superoxide anions (O-2) by rabbit cardiac submitochondrial particles (SMP) was stimulated after exposure of the isolated heart to 90 min of ischemic perfusion. This effect was more evident in the rotenone-inhibited region of the respiratory electron chain in comparison to the antimycin-inhibited region. The kinetic study of the NADH-dependent reaction showed that at the level of the rotenone-inhibited region, ischemia reduced Km value for NADH, differently from the antimycin-inhibited region where the kinetic constants remain unchanged. No significant changes of the Vmax values were observed in both SMP-producing O-2 sites.

The ischemic perfusions also produced a reduction of mitochondrial function, particularly evident when glutamate as substrate was studied.  相似文献   
22.
B.J. Crawford 《Tissue & cell》1983,15(6):993-1005
In clonal culture differentiated chick retinal pigmented epithelial (RPE) cells form a monolayer which shows little or no cellular division. The cells usually rest on a basal and reticular lamina and are polarized with their apical surface towards the medium. The apical surface is characterized by apical protrusions, an extensive apical web of microfilaments and junctional complexes which join the apical-lateral borders. A PA/S positive material with a felt-like appearance from the serum component of the medium coats the surfaces of the tissue culture plates. A similar material is found on any membrane filter which has been exposed to medium containing serum. When such a filter brought in contact with the upper surfaces of the RPE cells, the apical surface characteristics are lost, the cells often accumulate Alcian Blue positive material between the cells and the filter and secrete a reticular and a basal lamina, i.e. they establish a second basal surface. Once this has occurred, the cells appear to either detach from the plate and reverse their polarity, or undergo division forming two cell layers. In the latter case new apical surfaces are created between the cell layers but the cells appear to join to form circular structures rather than sheets. These results suggest that contact with this felt-like material initiates formation of a basal surface. They further suggest that where the apical surface has been converted to a basal one the cell attempts to restore the apical surface either by separating from the plate and reversing its polarity or by creating circular structures and developing new apices oriented toward the center of the circle.  相似文献   
23.
The possible activation of protein kinase C (PKC) during total cerebral ischemia was investigated in the rat. Translocation of PKC activity from the soluble to the particulate fraction was used as an index of PKC activation. There was a drop in the proportion of particulate PKC activity from 30% for controls to 20% by 30 min of ischemia (p less than 0.01). By 20 min of cardiac arrest, there was a 40% decline of the total cellular PKC activity (p less than 0.01). This was not accompanied by an increase in activator-independent activity, a finding indicating PKC was not being converted to protein kinase M. These data suggest that PKC was not activated during ischemia, but rather that ischemia causes a reduction in cellular PKC activity. Translocation of PKC activity to the particulate fraction was not observed in the cerebral cortex or hippocampus of reperfused brain for up to 6 h of recovery following 11-13 min of total cerebral ischemia. The level of total, soluble, and particulate PKC activity in the cerebral cortex was reduced (p less than 0.05), corresponding to the decrease observed by 15 min of ischemia without reflow. A similar decline in activity was also observed in the hippocampus. No increase in activator-independent activity was observed. These data suggest that PKC was inhibited during cerebral ischemia and that this reduced level of PKC activity was maintained throughout 6 h of recovery. We conclude that pathological activation of PKC was not responsible for the evolution of ischemic brain damage.  相似文献   
24.
The aim of our study was to investigate the changes of various biochemical parameters (concentrations of lactate, free arachidonate, cyclo- and lipoxygenase products) in rat brain after ischemia and reperfusion and the effects of pretreatment with the ganglioside derivative GM1-lactone on the same parameters. Ischemia was induced by reversible occlusion of common carotid arteries for 20 min, which included a final 5 min of respiration of 5% oxygen in nitrogen. Reperfusion was obtained by removing the occlusion. Pre-ischemic conditions were obtained on sham-operated animals. Animals were killed by microwave irradiation of their heads. Brain levels of lactate and of free arachidonate were markedly increased after ischemia and returned to normal values at 5 min of reperfusion. Levels of the cyclooxygenase metabolites prostaglandin F2 alpha, 6-keto-prostaglandin F1 alpha, and thromboxane B2 were increased after ischemia, whereas levels of the lipoxygenase metabolite leukotriene C4 (LTC4) did not change. After reperfusion, a very marked increase of the cyclooxygenase products occurred but not of LTC4. Treatment with GM1-lactone prevented the elevation of cyclo- and lipoxygenase metabolites especially during reperfusion, with limited effects on lactate and free arachidonate levels.  相似文献   
25.
The effect of ischemia on the properties of 5-hydroxytryptamine1A + B (5-HT1A+B) and 5-hydroxytryptamine1B (5-HT1B) binding sites, physical-state "fluidity" of the membrane, and its susceptibility to peroxidation in vitro was investigated in the cerebral cortex of gerbils. Ischemia was induced by bilateral carotid artery occlusion for 15 min alone or with release for 1 h. Ischemia both with and without reflow decreased the number of 5-HT1A + B and 5-HT1B binding sites, whereas ischemia and reflow altered the affinity for 5-HT1B binding sites. Resistance to the temperature-dependent increase in "fluidity" of the membrane was detected (by fluorescence anisotropy using 1,6-diphenyl-1,3,5-hexatriene as a probe) after ischemia and reflow but not in ischemia alone. Susceptibility of the membranes to Fe2+- and ascorbic acid-stimulated lipid peroxidation in vitro was decreased following ischemia and recirculation only. These findings strongly suggest that the composition and the function of the membrane are markedly disturbed during recirculation after ischemia.  相似文献   
26.
Abstract: We used in vitro translation and antibodies against phosphoserine and the eukaryotic initiation factors eIF-4E, eIF-4G, and eIF-2α to examine the effects of global brain ischemia and reperfusion on translation initiation and its regulation in a rat model of 10 min of cardiac arrest followed by resuscitation and 90 min of reperfusion. Translation reactions were performed on postmitochondrial supernatants from brain homogenates with and without aurintricarboxylic acid to separate incorporation due to run-off from incorporation due to peptide synthesis initiated in vitro. The rate of leucine incorporation due to in vitro-initiated protein synthesis in normal forebrain homogenates was ∼0.4 fmol of leucine/min/µg of protein and was unaffected by 10 min of cardiac arrest, but 90 min of reperfusion reduced this rate 83%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blots of these homogenates showed that neither 10 min of global brain ischemia nor 90 min of reperfusion induced significant alterations in the quantity or serine phosphorylation of eIF-4E. However, we observed in all 90-min-reperfused samples eIF-4G fragments that also bound eIF-4E. The amount of eIF-2α was not altered by ischemia or reperfusion, and immunoblotting after isoelectric focusing did not detect serine-phosphorylated eIF-2α in normal samples or in those obtained after ischemia without reperfusion. However, serine-phosphorylated eIF-2α was uniformly present after 90 min of reperfusion and represented 24 ± 3% of the eIF-2α in these samples. The serine phosphorylation of eIF-2α and partial fragmentation of eIF-4G observed after 90 min of reperfusion offer an explanation for the inhibition of protein synthesis.  相似文献   
27.
When retinal pigmented epithelial cells (PEC) of chick embryos are cultured under appropriate conditions, the phenotype changes to that of lens cells through a process known as transdifferentiation. The first half of the process, characterized by dedifferentiation of PEC, is accompanied by a marked decrease in adhesiveness of PEC to collagen type I- or type IV-coated dishes. To understand the underlying mechanisms of this change, we analyzed the expression of integrins, which are major receptors for extracellular matrix components. Northern blot analysis with cDNA probes for chicken α3, α6, α8, αv, β1 and β5 integrin mRNA showed that the genes for all these integrins are transcribed at similar levels in PEC and dedifferentiated PEC (dePEC). Further analysis of β1 integrin, which is a major component of integrin heterodimers, showed that although the protein amount of β1 integrin was not changed, its localization at focal contacts seen in PEC was lost in dePEC. When anti-β1 integrin antibody was added to the PEC culture medium, a decrease of cell-substrate adhesiveness occurred, followed by a gradual change in both morphology and gene expression patterns to ones similar to those of dePEC. These findings suggest that an appropriate distribution of β1 integrin plays an essential role in maintaining the differentiated state of PEC through cell-substrate adhesion.  相似文献   
28.
Neurofilaments subunits (NF-H, NF-M, NF-L) and glial fibrillary acidic protein (GFAP) were investigated in the hippocampus of rats after distinct periods of reperfusion (1 to 15 days) following 20 min of transient global forebrain ischemia in the rat. In vitro [14Ca]leucine incorporation was not altered until 48 h after the ischemic insult, however concentration of intermediate filament subunits significantly decreased in this period. Three days after the insult, leucine incorporation significantly increased while the concentration NF-H, NF-M, and NF-L were still diminished after 15 days of reperfusion. In vitro incorporation of32P into NF-M and NF-L suffered immediately after ischemia, but returned to control values after two days of reperfusion. GFAP levels decreased immediately after ischemia but quickly recovered and significantly peaked from 7 to 10 days after the insult. These results suggest that transient ischemia followed by reperfusion causes proteolysis of intermediate filaments in the hippocampus, and that proteolysis could be facilitated by diminished phosphorylation levels of NF-M and NF-L.  相似文献   
29.
Guanine nucleotide-binding regulatory proteins (G proteins) play a major role in the regulation of a number of physiological processes, such as stimulation or Inhibition of adenylate cyclase activity or gaiting of ionic channels. Myocardial ischemia could induce the changes in receptor-G protein signal transduction system in the heart. Therefore, this article will focus on the role and alterations of G proteins (especially, Gs and Gi) in myocardial ischemia. The Gi protein rapidly loses functional activity during very early myocardial ischemia. In contrast to Gi protein, the function of Gs protein during this phase has not been evaluated. Moreover, the changes in Gs protein after 30 min of ischemia are contradictory. However, the sensitization of the adenylate cyclase activity in the very early phase of acute ischemia is gradually replaced by a decrease in adenylate cyclase activity with prolonged ischemia. The decrease in the function and amount of Gs protein may be one of the factors that induce these changes. The function of Gs protein was also decreased in the canine hearts with ischemia and reperfusion. In contrast to ischemia and reperfusion, there are no significant alterations in G proteins and modulation of adenylate cyclase in the stunned myocardium. It has become increasingly evident that Gi protein may play an important role in the cardioprotective effects of preconditioning. When -adrenoceptor densities are reduced in chronic myocardial ischemia, decreased in the amount and function of Gi protein and increased amount of Gs protein may play the role in preservation of the adenylate cyclase activity. These alterations in G proteins may play the important role in the myocardial function during myocardial ischemia.  相似文献   
30.
Lavanchy  N.  Grably  S.  Garnier  A.  Rossi  A. 《Molecular and cellular biochemistry》1996,160(1):273-282
The role played by glycogenolysis in the ischemic heart has been recently put into question because it is suspected that a slowing down of this process could be beneficial for the tolerance of the myocardium to ischemia. The role of the intracellular effectors that control the rate of glycogenolysis has therefore regained interest. We aimed to understand the role played by those intracellular effectors which are directly related to the energy balance of the heart. To this end, we review some of the previously published data on this subject and we present new data obtained from P-31 and C-13 NMR spectroscopic measurement on isolated rat heart. Two conditions of ischemia were studied: 15 min global no-flow and 25 min low-flow ischemia. The hearts were isolated either from control animals or from rats pre-treated with isoproterenol (5 mg.kg–1 b.w. i.p.) 1 h before the perfusion in order to C-13 label glycogen stores. Our main results are as follows: (1) the biochemically determined glycogenolysis rate during the early phase of ischemia (up to 10–15 min) was larger in no-flow ischemia than in low-flow conditions for both groups, (2) direct measurement of the glycogenolysis rate, as determined by C-13 NMR, after labelling of the glycogen pool in the hearts from isoproterenol-treated rats, confirms the estimations from the biochemical data, (3) glycogenolysis was slower in the hearts from pre-treated animals than in control hearts for both conditions of ischemia, (4) the total activity of glycogen phosphorylase (a + b) increased, by 50%, after 5 min no-flow ischemia, whereas it decreased by 42% after the same time of low-flow ischemia. However, the ratio phosphorylase a/a + b was not altered, whatever the conditions, (5) the concentration of inorganic phosphate (Pi) increased sharply during the first minutes of ischemia, to values above 8–10 mM, under all conditions studied. The rate of increase was larger during no-flow ischemia than during low-flow ischemia. The concentration of Pi was thereafter higher in controls than in the hearts from isoproterenol-treated animals.The calculated cytosolic concentration of free 5 AMP increased sharply at the onset of ischemia, reaching in a few minutes values above 30 M in controls and significantly lower values, around 15 M, in the hearts from isoproterenol-treated rats. (6) The hearts from isoproterenol-treated rats displayed a reduced intracellular acidosis, when compared to controls, under both conditions of ischemia.We conclude that the intracellular effectors, mainly free AMP, play an essential role in the control of glycogenolysis via allosteric control of phosphorylase b activity. The alteration in the concentration of free Pi, the substrate of both forms of phosphorylase, can also be considered as determinant in the control of the rate of glycogenolysis.The attenuation of ischemia-induced intracellular acidosis in the hearts from isoproterenol-treated rats could be a consequence of a reduced glycogenolytic rate and is likely to be related to a better resumption of the mechanical function on reperfusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号