首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2007篇
  免费   192篇
  国内免费   57篇
  2024年   4篇
  2023年   73篇
  2022年   64篇
  2021年   109篇
  2020年   80篇
  2019年   105篇
  2018年   90篇
  2017年   66篇
  2016年   75篇
  2015年   107篇
  2014年   141篇
  2013年   133篇
  2012年   82篇
  2011年   98篇
  2010年   83篇
  2009年   140篇
  2008年   117篇
  2007年   124篇
  2006年   136篇
  2005年   89篇
  2004年   76篇
  2003年   59篇
  2002年   37篇
  2001年   36篇
  2000年   17篇
  1999年   16篇
  1998年   10篇
  1997年   11篇
  1996年   14篇
  1995年   12篇
  1994年   14篇
  1993年   10篇
  1992年   2篇
  1991年   9篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有2256条查询结果,搜索用时 15 毫秒
41.
42.
Body size or mass is one of the main factors underlying food webs structure. A large number of evolutionary models have shown that indeed, the adaptive evolution of body size (or mass) can give rise to hierarchically organised trophic levels with complex between and within trophic interactions. However, these models generally make strong arbitrary assumptions on how traits evolve, casting doubts on their robustness. In particular, biomass conversion efficiency is always considered independent of the predator and prey size, which contradicts with the literature. In this paper, we propose a general model encompassing most previous models which allows to show that relaxing arbitrary assumptions gives rise to unrealistic food webs. We then show that considering biomass conversion efficiency dependent on species size is certainly key for food webs adaptive evolution because realistic food webs can evolve, making obsolete the need of arbitrary constraints on traits' evolution. We finally conclude that, on the one hand, ecologists should pay attention to how biomass flows into food webs in models. On the other hand, we question more generally the robustness of evolutionary models for the study of food webs.  相似文献   
43.
Zhao  Yu  Ma  Chen  Yang  Jie  Zou  Xiufen  Pan  Zishu 《中国病毒学》2021,36(6):1327-1340
Virologica Sinica - Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infections in children. Inactivated RSV vaccine was developed in the late 1960’s, but the...  相似文献   
44.
Restoration efforts will be taking place over the next decade(s) in the largest scope and capacity ever seen. Immense commitments, goals, and budgets are set, with impactful wide‐reaching potential benefits for people and the environment. These are ambitious aims for a relatively new branch of science and practice. It is time for restoration action to scale up, the legacy of which could impact over 350 million hectares targeted for the U.N. Decade on Ecosystem Restoration. However, restoration still proceeds on a case‐by‐case, trial by error basis and restoration outcomes can be variable even under similar conditions. The ability to put each case into context—what about it worked, what did not, and why—is something that the synthesis of data across studies can facilitate. The link between data synthesis and predictive capacity is strong. There are examples of extremely ambitious and successful efforts to compile data in structured, standardized databases which have led to valuable insights across regional and global scales in other branches of science. There is opportunity and challenge in compiling, standardizing, and synthesizing restoration monitoring data to inform the future of restoration practice and science. Through global collation of restoration data, knowledge gaps can be addressed and data synthesized to advance toward a more predictive science to inform more consistent success. The interdisciplinary potential of restoration ecology sits just over the horizon of this decade. Through truly collaborative synthesis across foci within the restoration community, we have the opportunity to rapidly reach that potential and achieve extraordinary outcomes together.  相似文献   
45.
This article presents a methodology for identifying critical links in global resource supply chains by tracking resources from their extraction in one region of the world economy through their embodiment in intermediate products in the same and other regions to eventual embodiment in final goods. We build on previous work that applied an absorbing Markov chain (AMC) to results obtained using an input‐output (IO) model of a single region to define a resource‐specific network within that economy. In the absence of model calculations, the AMC can also be applied to standard IO data for a past year. This article first generalizes the analytic framework from a single region to the important case of the global resource‐specific network. This network typically includes cycling of embodied resources between sectors not only within each economy, but also among regions, as subsequent rounds of intermediate products are traded. Next, we refine that analysis to exhibit a crucial subnetwork, the resource end‐use network, which only tracks the portion of the resource that ends up embodied in a specific final product in a given region. Finally, we develop techniques to distinguish key branches of these networks and provide detailed insights about the structure of global resource dependence. A numerical example is applied to results of scenario analysis using an IO model of the world economy. Two alternative scenarios are compared. In each scenario, embodied resources are carried over specific branches of a global network in three regions using three resources to produce four goods.  相似文献   
46.
Climate change‐driven stressors threaten the persistence of coral reefs worldwide. Symbiotic relationships between scleractinian corals and photosynthetic endosymbionts (genus Symbiodinium) are the foundation of reef ecosystems, and these associations are differentially impacted by stress. Here, we couple empirical data from the coral reefs of Moorea, French Polynesia, and a network theoretic modeling approach to evaluate how patterns in coral‐Symbiodinium associations influence community stability under climate change. To introduce the effect of climate perturbations, we simulate local ‘extinctions’ that represent either the loss of coral species or the ability to engage in symbiotic interactions. Community stability is measured by determining the duration and number of species that persist through the simulated extinctions. Our results suggest that four factors greatly increase coral‐Symbiodinium community stability in response to global changes: (i) the survival of generalist hosts and symbionts maximizes potential symbiotic unions; (ii) elevated symbiont diversity provides redundant or complementary symbiotic functions; (iii) compatible symbiotic assemblages create the potential for local recolonization; and (iv) the persistence of certain traits associate with symbiotic diversity and redundancy. Symbiodinium may facilitate coral persistence through novel environmental regimes, but this capacity is mediated by symbiotic specificity, association patterns, and the functional performance of the symbionts. Our model‐based approach identifies general trends and testable hypotheses in coral‐Symbiodinium community responses. Future studies should consider similar methods when community size and/or environmental complexity preclude experimental approaches.  相似文献   
47.
48.
49.
The tissues of multicellular organisms are made of differentiated cells arranged in organized patterns. This organization emerges during development from the coupling of dynamic intra- and intercellular regulatory networks. This work applies the methods of information theory to understand how regulatory network structure both within and between cells relates to the complexity of spatial patterns that emerge as a consequence of network operation. A computational study was performed in which undifferentiated cells were arranged in a two dimensional lattice, with gene expression in each cell regulated by identical intracellular randomly generated Boolean networks. Cell–cell contact signalling between embryonic cells is modeled as coupling among intracellular networks so that gene expression in one cell can influence the expression of genes in adjacent cells. In this system, the initially identical cells differentiate and form patterns of different cell types. The complexity of network structure, temporal dynamics and spatial organization is quantified through the Kolmogorov-based measures of normalized compression distance and set complexity. Results over sets of random networks that operate in the ordered, critical and chaotic domains demonstrate that: (1) ordered and critical networks tend to create the most information-rich patterns; (2) signalling configurations in which cell-to-cell communication is non-directional mostly produce simple patterns irrespective of the internal network domain; and (3) directional signalling configurations, similar to those that function in planar cell polarity, produce the most complex patterns, but only when the intracellular networks function in non-chaotic domains.  相似文献   
50.
The ability to generate and design antibodies recognizing specific targets has revolutionized the pharmaceutical industry and medical imaging. Engineering antibody therapeutics in some cases requires modifying their constant domains to enable new and altered interactions. Engineering novel specificities into antibody constant domains has proved challenging due to the complexity of inter‐domain interactions. Covarying networks of residues that tend to cluster on the protein surface and near binding sites have been identified in some proteins. However, the underlying role these networks play in the protein resulting in their conservation remains unclear in most cases. Resolving their role is crucial, because residues in these networks are not viable design targets if their role is to maintain the fold of the protein. Conversely, these networks of residues are ideal candidates for manipulating specificity if they are primarily involved in binding, such as the myriad interdomain interactions maintained within antibodies. Here, we identify networks of evolutionarily‐related residues in C‐class antibody domains by evaluating covariation, a measure of propensity with which residue pairs vary dependently during evolution. We computationally test whether mutation of residues in these networks affects stability of the folded antibody domain, determining their viability as design candidates. We find that members of covarying networks cluster at domain‐domain interfaces, and that mutations to these residues are diverse and frequent during evolution, precluding their importance to domain stability. These results indicate that networks of covarying residues exist in antibody domains for functional reasons unrelated to thermodynamic stability, making them ideal targets for antibody design. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号