首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8080篇
  免费   821篇
  国内免费   474篇
  9375篇
  2024年   28篇
  2023年   156篇
  2022年   126篇
  2021年   203篇
  2020年   296篇
  2019年   362篇
  2018年   332篇
  2017年   317篇
  2016年   330篇
  2015年   368篇
  2014年   395篇
  2013年   592篇
  2012年   356篇
  2011年   393篇
  2010年   378篇
  2009年   460篇
  2008年   480篇
  2007年   509篇
  2006年   396篇
  2005年   337篇
  2004年   313篇
  2003年   264篇
  2002年   204篇
  2001年   173篇
  2000年   156篇
  1999年   144篇
  1998年   166篇
  1997年   119篇
  1996年   114篇
  1995年   87篇
  1994年   80篇
  1993年   78篇
  1992年   80篇
  1991年   70篇
  1990年   56篇
  1989年   51篇
  1988年   45篇
  1987年   57篇
  1986年   32篇
  1985年   34篇
  1984年   42篇
  1983年   27篇
  1982年   34篇
  1981年   21篇
  1980年   30篇
  1979年   20篇
  1978年   11篇
  1974年   11篇
  1972年   9篇
  1971年   8篇
排序方式: 共有9375条查询结果,搜索用时 15 毫秒
21.
Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait‐space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables.  相似文献   
22.
Summary I study the evolutionarily stable seasonal patterns of hatching and pupation for herbivorous insects that engage in exploitative competition for a renewable resource. A longer larval feeding period enhances female fecundity, but also causes a higher mortality by predation and parasitism. Previously, it was shown that the evolutionarily stable population exhibits asynchronous starting and ending of the larval feeding period in a model in which larval growth rate decreases with the total larval biomass in the population due presumably to interference competition. Here I study the case in which resource availability changes not only with environmental seasonality but with the depletion by the feeding of larvae. I find that if the impact of the herbivory is strong, both hatching and pupation should occur asynchronously in the evolutionarily stable population. And if the favourable season for the host plant is short the ESS population may include synchronous timing of pupation. If the timing of hatching and pupation occurs asynchronously, in the first day of each interval some fraction of the population hatch or pupate, respectively and the rest do so gradually over the interval. In addition, if the environmental variable changes as a symmetric function of time, the length of the period in which hatching occurs tends to be much shorter than the period in which pupation occurs.  相似文献   
23.
In polyandrous mating systems, male reproductive success depends on both mate-acquisition traits (precopulatory) and sperm competitive abilities (postcopulatory). Empirical data on the interaction between these traits are inconsistent; revealing positive, negative or no relationships. It is generally expected that the investment in pre- and postcopulatory traits is mediated by environmental conditions. To test how dietary resource availability affects sexual ornamentation, sperm quality and their interrelationship in three-spined sticklebacks (Gasterosteus aculeatus), full-sibling groups were raised under three conditions differing in food quantity and/or quality (i.e. carotenoid content): (i) high-quantity/high-quality, (ii) high-quantity/low-quality or (iii) low-quantity/low-quality. After 1 year of feeding, food-restricted males developed a more intense breeding coloration and faster sperm compared with their well-fed brothers, indicating that they allocated relatively more in pre- and postcopulatory traits. Moreover, they outcompeted their well-fed, carotenoid-supplemented brothers in sperm competition trials with equal numbers of competing sperm, suggesting that food-restricted males maximize their present reproductive success. This may result in reduced future reproductive opportunities as food-restricted males suffered from a higher mortality, had an overall reduced body size, and sperm number available for fertilization. In accordance with theory, a trade-off between the investment in pre- and postcopulatory traits was observed in food-restricted males, whereas well-fed males were able to allocate to both traits resulting in a significantly positive relationship.  相似文献   
24.
Secretions of an eversible gland on the metathorax of larvae of Chlaenius cordicollis Kirby (Coleoptera: Carabidae) are investigated by headspace analysis using solid phase microextraction followed by gas chromatography‐mass spectrometry (GC‐MS). Larvae from Manitoba, Canada and Pennsylvania, U.S.A., are sampled. Nine presumed defensive compounds are detected when the gland is everted, and this represents the first characterization of defensive secretions of larvae of a carabid beetle. With the exception of a single component (2‐methoxy‐4‐methylphenol), these compounds are distinct from those found in the defensive secretion of adult C. cordicollis. However, seven are more oxidized versions of the alkylphenolic compounds secreted by adult beetles: three hydroquinones (hydroquinone, methylhydroquinone and 2,3‐dimethylhydroquinone) and four quinones (p‐benzoquinone, toluquinone, 2,3‐dimethylquinone and ethyl‐p‐benzoquinone). An additional alkoxyphenol (2‐methoxy‐4‐ethylphenol) is also detected. Two patterns of composition are observed: in one, p‐benzoquinone and hydroquinone are undetectable and the ratio of toluquinone : 2,3‐dimethylquinone is 1 : 4.6 ± 0.6 (mean ± SE); in the other, all nine compounds are detectable and the ratio of toluquinone : 2,3‐dimethylquinone is 1 : 1.0 ± 0.2. These differences in pattern do not appear to be related to geographical source, sex or age of the larvae.  相似文献   
25.
ABSTRACT Telemetry data have been widely used to quantify wildlife habitat relationships despite the fact that these data are inherently imprecise. All telemetry data have positional error, and failure to account for that error can lead to incorrect predictions of wildlife resource use. Several techniques have been used to account for positional error in wildlife studies. These techniques have been described in the literature, but their ability to accurately characterize wildlife resource use has never been tested. We evaluated the performance of techniques commonly used for incorporating telemetry error into studies of wildlife resource use. Our evaluation was based on imprecise telemetry data (mean telemetry error = 174 m, SD = 130 m) typical of field-based studies. We tested 5 techniques in 10 virtual environments and in one real-world environment for categorical (i.e., habitat types) and continuous (i.e., distances or elevations) rasters. Technique accuracy varied by patch size for the categorical rasters, with higher accuracy as patch size increased. At the smallest patch size (1 ha), the technique that ignores error performed best on categorical data (0.31 and 0.30 accuracy for virtual and real data, respectively); however, as patch size increased the bivariate-weighted technique performed better (0.56 accuracy at patch sizes >31 ha) and achieved complete accuracy (i.e., 1.00 accuracy) at smaller patch sizes (472 ha and 1,522 ha for virtual and real data, respectively) than any other technique. We quantified the accuracy of the continuous covariates using the mean absolute difference (MAD) in covariate value between true and estimated locations. We found that average MAD varied between 104 m (ignore telemetry error) and 140 m (rescale the covariate data) for our continuous covariate surfaces across virtual and real data sets. Techniques that rescale continuous covariate data or use a zonal mean on values within a telemetry error polygon were significantly less accurate than other techniques. Although the technique that ignored telemetry error performed best on categorical rasters with smaller average patch sizes (i.e., ≤31 ha) and on continuous rasters in our study, accuracy was so low that the utility of using point-based approaches for quantifying resource use is questionable when telemetry data are imprecise, particularly for small-patch habitat relationships.  相似文献   
26.
27.
A mechanism is suggested, based on a biphasic approach-withdrawal theory proposed byT. C. Schneirla, to account for how behaviours may be selected by environmental forces for transmission over generations. The basic postulates of Schneirla's theory are presented followed by an examination of some aspects of lorisid behaviour in the light of this theory.  相似文献   
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号