首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7029篇
  免费   451篇
  国内免费   114篇
  7594篇
  2023年   68篇
  2022年   133篇
  2021年   154篇
  2020年   121篇
  2019年   177篇
  2018年   267篇
  2017年   125篇
  2016年   152篇
  2015年   221篇
  2014年   378篇
  2013年   482篇
  2012年   186篇
  2011年   408篇
  2010年   377篇
  2009年   481篇
  2008年   497篇
  2007年   418篇
  2006年   397篇
  2005年   333篇
  2004年   276篇
  2003年   247篇
  2002年   208篇
  2001年   111篇
  2000年   93篇
  1999年   102篇
  1998年   121篇
  1997年   78篇
  1996年   72篇
  1995年   57篇
  1994年   61篇
  1993年   63篇
  1992年   51篇
  1991年   43篇
  1990年   32篇
  1989年   37篇
  1988年   34篇
  1987年   29篇
  1986年   23篇
  1985年   56篇
  1984年   78篇
  1983年   50篇
  1982年   77篇
  1981年   55篇
  1980年   35篇
  1979年   40篇
  1978年   18篇
  1977年   13篇
  1976年   12篇
  1974年   13篇
  1973年   10篇
排序方式: 共有7594条查询结果,搜索用时 0 毫秒
61.
Fifty normal noninfarct patients and 12 cases with infarcts of the cerebrum were examined with routine magnetic resonance imaging and echo-planar diffusion-weighted imaging. The diffusion-weighted three-dimensional images were reconstructed with volume-rendering processing on workstation. Precentral gyrus, post-central gyrus, superior parietal lobule, superior frontal gyrus, precentral sulcus, central sulcus, postcentral sulcus, intraparietal sulcus and superior frontal sulcus were best shown of all structures with an arbitrary score of 2.61–2.77. Supramarginal gyrus, middle frontal gyrus, inferior frontal gyrus and lateral sulcus were clearly shown in the majority of the cerebra with average scores of 2.0–2.49; angular gyrus, inferior frontal sulcus and superior temporal gyrus were not demonstrated satisfactorily and their average scores were 1.67–1.89. Middle temporal gyrus, inferior temporal gyrus, superior temporal sulcus and inferior temporal sulcus were difficult to identify, and thus had average scores of 0.87–1.26. Brain surface structures were better displayed in the older group of individuals than in the younger group. The structures in the 12 cases with acute or chronic cerebrum infarcts were also satisfactorily demonstrated with this new technique.  相似文献   
62.
Kataoka Y  Takada K  Oyama H  Tsunemi M  James MN  Oda K 《FEBS letters》2005,579(14):2991-2994
Scytalidoglutamic peptidase (SGP) is the first-discovered member of the eqolisin family of peptidases with a unique structure and a presumed novel catalytic dyad (E136 and Q53) [Fujinaga et al., PNAS 101 (2004) 3364-3369]. Mutants of SGP, E136A, Q53A, and Q53E lost both the autoprocessing and enzymatic activities of the wild-type enzyme. Coupled with the results from the structural analysis of SGP, Glu136 and Gln53 were identified as the catalytic residues. The substrate specificity of SGP is unique, particularly, in the preference at the P3 (basic amino acid), P1' (small a.a.), and P3' (basic a.a.) positions. Superior substrates and inhibitors have been synthesized for kinetic studies based on the results reported here. kcat, Km, and kcat/Km of SGP for D-Dap(MeNHBz)-GFKFF*ALRK(Dnp)-D-R-D-R were 34.8 s-1, 0.065 microM, and 535 microM-1 s-1, respectively. Ki of Ac-FKF-(3S,4S)-phenylstatinyl-LR-NH2 for SGP was 1.2x10(-10) M. Taken together, we can conclude that SGP has not only structural and catalytic novelties but also a unique subsite structure.  相似文献   
63.
In order to examine the properties specific to the folded protein, the effect of the conformational states on protein dynamical transition was studied by incoherent elastic neutron scattering for both wild type and a deletion mutant of staphylococcal nuclease. The deletion mutant of SNase which lacks C-terminal 13 residues takes a compact denatured structure, and can be regarded as a model of intrinsic unstructured protein. Incoherent elastic neutron scattering experiments were carried out at various temperature between 10 K and 300 K on IN10 and IN13 installed at ILL. Temperature dependence of mean-square displacements was obtained by the q-dependence of elastic scattering intensity. The measurements were performed on dried and hydrated powder samples. No significant differences were observed between wild type and the mutant for the hydrated samples, while significant differences were observed for the dried samples. A dynamical transition at ∼ 140 K observed for both dried and hydrated samples. The slopes of the temperature dependence of MSD before transition and after transition are different between wild type and the mutant, indicating the folding induces hardening. The hydration water activates a further transition at ∼ 240 K. The behavior of the temperature dependence of MSD is indistinguishable for wild type and the mutant, indicating that hydration water dynamics dominate the dynamical properties.  相似文献   
64.
Soluble huntingtin exon 1 (Httex1) with expanded polyglutamine (polyQ) engenders neurotoxicity in Huntington's disease. To uncover the physical basis of this toxicity, we performed structural studies of soluble Httex1 for wild-type and mutant polyQ lengths. Nuclear magnetic resonance experiments show evidence for conformational rigidity across the polyQ region. In contrast, hydrogen–deuterium exchange shows absence of backbone amide protection, suggesting negligible persistence of hydrogen bonds. The seemingly conflicting results are explained by all-atom simulations, which show that Httex1 adopts tadpole-like structures with a globular head encompassing the N-terminal amphipathic and polyQ regions and the tail encompassing the C-terminal proline-rich region. The surface area of the globular domain increases monotonically with polyQ length. This stimulates sharp increases in gain-of-function interactions in cells for expanded polyQ, and one of these interactions is with the stress-granule protein Fus. Our results highlight plausible connections between Httex1 structure and routes to neurotoxicity.  相似文献   
65.
Summary.  The aim of this work was to study the activity of NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) in the regeneration of lipophilic antioxidants, alpha-tocopherol, and reduced-coenzyme Q analogs. First, we tested whether or not two isoforms of the NAD(P)H:(quinone acceptor) oxidoreductase 1 designated as “hydrophilic” and “hydrophobic” (H. J. Prochaska and P. Talalay, Journal of Biological Chemistry 261: 1372–1378, 1986) show differential enzyme activities towards hydrophilic or hydrophobic ubiquinone homologs. By chromatography on phenyl Sepharose, we purified the two isoforms from pig liver cytosol and measured their reduction of several ubiquinone homologs of different side chain length. We also studied by electron paramagnetic resonance the effect of NAD(P)H:(quinone acceptor) oxidoreductase 1 on steady-state levels of chromanoxyl radicals generated by linoleic acid and lipooxygenase and confirmed the enzyme's ability to protect alpha-tocopherol against oxidation induced with H2O2-Fe2+. Our results demonstrated that the different hydrophobicities of the isoforms do not reflect different reactivities towards ubiquinones of different side chain length. In addition, electron paramagnetic resonance studies showed that in systems containing the reductase plus NADH, levels of chromanoxyl radicals were dramatically reduced. Morever, in the presence of oxidants, alpha-tocopherol was preserved by NAD(P)H:(quinone acceptor) oxidoreductase 1, supporting our hypothesis that regeneration of alpha-tocopherol may be one of the physiologic functions of this enzyme. Received May 20, 2002; accepted September 20, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Ciencias, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14014 Córdoba, Spain.  相似文献   
66.
We have studied the quaternary structure of α-crystallin in the presence of increasing concentrations of amphiphilic and neutral detergents using gel filtration, light-scattering, boundary and equilibrium sedimentation. We observed a continuous reduction of the molar mass of the polymeric α-crystallin on increasing the concentration of sodium dodecyl sulphate from 0.1 mM to 5 mM, ending up with the monomeric peptides. Dodecyltrimethylammonium bromide also disrupts the oligomeric structure of α-crystallin but the interaction appears to be cooperative: in the sharp transition region (for a 1 mg/ml protein solution) from 3 to 8 mM of the detergent, only the native protein and a mixture of monomeric and dimeric peptide-DTAB complexes can be observed. Concomitant studies of the circular dichroism in the far UV revealed a substantial decrease of the β-sheet and increase of the α-helix secondary structure. The latter can be related to the presence of amphiphilic polypeptide sequences in the constituent αA and αB peptides. These studies reveal for the first time a direct relation between changes in the secondary structure of the αA and αB peptides and the formation of the oligomeric α-crystallin structure: the binding of the amphiphilic detergent reduces the β-sheet content, induces the formation of α-helix secondary structure and reduces the tendency of the peptide to form large aggregates. The different mechanisms for reducing the oligomeric size by anionic and cationic detergents with identical apolar parts stresses the importance of charge interactions. Our findings support some aspects of the micelle model of α-crystallin and can be related to its chaperone activity. Accepted: 18 October 1996  相似文献   
67.
Due to the instability of DNA oligonucleotides in biological solutions, antisense or antigene therapies aimed at modulation of specific gene expression will most likely require the use of oligonucleotides with modified backbones. Here, we examine the use of a surface plasmon resonance biosensor (BIAcore) to compare triplex-directed binding of modified oligonucleotides targeted to a region of the murine c-myc promoter. We describe optimization of experimental conditions to minimize nonspecific interactions between the oligonucleotides and the sensor chip surface, and the limitations imposed by certain backbones and sequence types. The abilities of pyrimidine oligonucleotides with various modified backbones to form specific triple helices with an immobilized hairpin duplex were readily determined using the biosensor. Modification of the third-strand oligonucleotide with RNA or 2(')-O-methyl RNA was found to enhance triplex formation, whereas phosphorothioate or phosphotriester substitutions abrogated it. A comparison of these results to DNase I footprinting experiments using the same oligonucleotides showed complete agreement between the two sets of data.  相似文献   
68.
Radioactive, chromogenic, fluorescent and other labels have long provided the basis of detection systems for biomolecular interactions including immunoassays and receptor binding studies. However there has been unprecedented growth in a number of powerful label free biosensor technologies over the last decade. While largely at the proof-of-concept stage in terms of clinical applications, the development of more accessible platforms may see surface plasmon resonance (SPR) emerge as one of the most powerful optical detection platforms for the real-time monitoring of biomolecular interactions in a label-free environment.In this review, we provide an overview of SPR principles and current and future capabilities in a diagnostic context, including its application for monitoring a wide range of molecular markers of disease. The advantages and pitfalls of using SPR to study biomolecular interactions are discussed, with particular emphasis on its potential to differentiate subspecies of analytes and the inherent ability for quantitation through calibration-free concentration analysis (CFCA). In addition, recent advances in multiplex applications, high throughput arrays, miniaturisation, and enhancements using noble metal nanoparticles that promise unprecedented sensitivity to the level of single molecule detection, are discussed.In summary, while SPR is not a new technique, technological advances may see SPR quickly emerge as a highly powerful technology, enabling rapid and routine analysis of molecular interactions for a diverse range of targets, including those with clinical applicability. As the technology produces data quickly, in real-time and in a label-free environment, it may well have a significant presence in future developments in lab-on-a-chip technologies including point-of-care devices and personalised medicine.  相似文献   
69.
A deletion mutant that lacks the Psb30 protein, one of the small subunits of Photosystem II, was constructed in a Thermosynechococcus elongatus strain in which the D1 protein is expressed from the psbA3 gene (WT*). The ΔPsb30 mutant appears more susceptible to photodamage, has a cytochrome b559 that is converted into the low potential form, and probably also lacks the PsbY subunit. In the presence of an inhibitor of protein synthesis, the ?Psb30 lost more rapidly the water oxidation function than the WT* under the high light conditions. These results suggest that Psb30 contributes to structurally and functionally stabilise the Photosystem II complex in preventing the conversion of cytochrome b559 into the low potential form. Structural reasons for such effects are discussed.  相似文献   
70.
Adenylate kinase (AdK), a phosphotransferase enzyme, plays an important role in cellular energy homeostasis. It undergoes a large conformational change between an open and a closed state, even in the absence of substrate. We investigate the apo-AdK transition at the atomic level both with free-energy calculations and with our new dynamic importance sampling (DIMS) molecular dynamics method. DIMS is shown to sample biologically relevant conformations as verified by comparing an ensemble of hundreds of DIMS transitions to AdK crystal structure intermediates. The simulations reveal in atomic detail how hinge regions partially and intermittently unfold during the transition. Conserved salt bridges are seen to have important structural and dynamic roles; in particular, four ionic bonds that open in a sequential, zipper-like fashion and, thus, dominate the free-energy landscape of the transition are identified. Transitions between the closed and open conformations only have to overcome moderate free-energy barriers. Unexpectedly, the closed state and the open state encompass broad free-energy basins that contain conformations differing in domain hinge motions by up to 40°. The significance of these extended states is discussed in relation to recent experimental Förster resonance energy transfer measurements. Taken together, these results demonstrate how a small number of cooperative key interactions can shape the overall dynamics of an enzyme and suggest an “all-or-nothing” mechanism for the opening and closing of AdK. Our efficient DIMS molecular dynamics computer simulation approach can provide a detailed picture of a functionally important macromolecular transition and thus help to interpret and suggest experiments to probe the conformational landscape of dynamic proteins such as AdK.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号